"अनुरूपी निरूपण": अवतरणों में अंतर

अद्‌भुत भारत की खोज
नेविगेशन पर जाएँ खोज पर जाएँ
[अनिरीक्षित अवतरण][अनिरीक्षित अवतरण]
No edit summary
No edit summary
 
पंक्ति १: पंक्ति १:
{{भारतकोश पर बने लेख}}
{{लेख सूचना
{{लेख सूचना
|पुस्तक नाम=हिन्दी विश्वकोश खण्ड 1
|पुस्तक नाम=हिन्दी विश्वकोश खण्ड 1

१२:३४, २५ मई २०१८ के समय का अवतरण

चित्र:Tranfer-icon.png यह लेख परिष्कृत रूप में भारतकोश पर बनाया जा चुका है। भारतकोश पर देखने के लिए यहाँ क्लिक करें
लेख सूचना
अनुरूपी निरूपण
पुस्तक नाम हिन्दी विश्वकोश खण्ड 1
पृष्ठ संख्या 125
भाषा हिन्दी देवनागरी
संपादक सुधाकर पाण्डेय
प्रकाशक नागरी प्रचारणी सभा वाराणसी
मुद्रक नागरी मुद्रण वाराणसी
संस्करण सन्‌ 1973 ईसवी
उपलब्ध भारतडिस्कवरी पुस्तकालय
कॉपीराइट सूचना नागरी प्रचारणी सभा वाराणसी
लेख सम्पादक बृजमोहनलाल साहनी ।

अनुरूपी निरूपण एक तल पर बनी किसी आकृति को दूसरे के लिए दूसरी आकृति में एक ही संगत बिंदू हो, और इसके अतिरिक्त, दोनों आकृतियों के संगतकोण बराबर हो, अनुरूपी निरूपण (कन्फॉर्मल रिप्रेजेंटेशन) कहते है, क्योंकि इसमें एक आकृति का दूसरी आकृति में इस प्रकार निरूपण होता है कि दोनों आकृतियों के छोटे छोटे भाग अनुरूप (सिमिलर) बने रहते हैं।

मान लीजिए, एक तल में क ख ग एक त्रिभुज है और दूसरे तल में कि, खि, गि संगत त्रिभुज है। यह आवश्यक नहीं है कि त्रिभुजों की भुजाएँ ऋजु रेखाएँ हों तो भी, जब त्रिभुजों के आकार बहुत छोटे हो जाएँगे, हम उन्हें ऋजु रेखाओं के सदृश ही मान सकते हैं।

चित्र:324-1.jpg


जब बिंदु ख, ग बिंदु क की ओर प्रवृत्त होंगे, तब संगत बिंदु खि, गि बिंदु कि की ओर प्रवृत्त होंगे। यद निरूपण अनुरूपी हो तो अंत में त्रिभुज क ख ग और कि खि गि के संगत कोण समान हो जाएँगे और संगत भुजाएँ अनुपाती हो जाएँगी। अत: जो दो वक्र क पर मिलते हैं, उनका मध्यस्थ कोण उन दो वक्रों के मध्यस्थ कोण के बराबर होगा जो कि पर मिलते हैं।

अनुरूपी निरूपण का सबसे प्रसिद्ध प्रयोग मर्केटर प्रक्षेप कहलाता है। जिसके द्वारा भूमंडल की आकृतियों का चित्रण समतल पर किया जाता है (द्र. 'मर्केटर प्रक्षेप')।

लैंबर्ट ने सन्‌ 1772 में उक्त प्रश्न का अधिक व्यापक रूप से अध्ययन किया। पीछै लैंग्रांज ने बताया कि इस विषय का संमिश्र चर के फलनों (फंकशंस ऑव ए कंप्लेक्स वेरिएबुल) से क्या संबंध है। सन्‌ 1822 में कोपिनहैगन की विज्ञान परिषद् ने एक पुरस्कार के लिए यह विषय प्रस्तावित किया कि एक तल के विभिन्न भाग दूसरे तल पर इस कैसे चित्रित किए जाएँ कि प्रतिबिंब के छोटे से छोटे भाग मौलिक तल के संगत भागों के अनुरूप हों? गाउस ने सन्‌ 1825 में इस समस्या क हल निकाला और वहीं से इस विषय के व्यापक सिद्धांत का आरंभ हुआ। पिछले 50 वर्षों में इस क्षेत्र के अन्य कार्यकर्ताओं में रीमान, श्वार्ज,और क्लाइन उल्लेखनीय हैं।

मान लीजिए कि स=श (य, र)+श्रष (य, र) संमिश्र राशि ल=य+श्रर का एक वैश्लेषिक फलन है, जिसमें श्र=Ö (-1)। यह सरलता से सिद्ध किया जा सकता है कि फलन की वैश्लेषिकता के लिए आवश्यक और पर्याप्त शर्तें ये हैं:

चित्र:10324-1.gif


इन समीकरणों का कोशी रीमान समीकरण कहते हैं। जब ये समीकरण संतुष्ट हो जाते है तब, यदि हम य, र समतल की किसी आकृति का निरूपण श, ष समतल करें, तो निरूपण अनुरूपी होगा और कोणों में कोई परिवर्तन नहीं होगा। इसके लिए यह आवश्यक है कि दोनों फलन श तथा ष सतत हों और उनके चारों आंशिक अवकल गुणक

चित्र:10324-2.gif


भी सतत हों। आकृतियों की अनुरूपता केवल उन बिंदुओं पर टूटेगी जहाँ उपरिलिखित चारों अवकल गुणक शून्य हो जाएँगे।

उदाहरण के लिए हम कोई भी वैष्लेषिक फलन स=फ (ल) लें सकते है, जैसे ल2, कोज्या ल अथवा ज्या ल। यदि हम स=ल2 (ल श्रर)2 लें तो श=य2-र2 और ष=2 य र।

फिर

चित्र:10324-3.gif

यदि हम य, र समतल में ऋजु रेखाओं की दो संहतियाँ य=क;र=ख लें, जो परस्पर लंब हों, तो श, ष समतल में उनकी आकृतियों परवलय होंगी : ष2=4क2 (क2-श) और ष2=4ख2 (ख2+ श) जो समनाभि और समकोणीय हैं। स्पष्ट है कि य, र समतल के समकोण श, ष समतल में भी समकोणों से ही निरूपित होते हैं।

इसी प्रकार यदि हम श, ष समतल में दो रेखापुंज लें : श=ग, ष=घ जो समकोणीय हैं, तो य, र समतल और आयताकार अतिपरवलय य2-र2=ग और 2यर=घ उनकी संगत आकृतियाँ होंगी। स्पष्ट है कि इस निरूपण में भी आकृतियों के कोणगुण अक्षुण्ण बने रहते हैं।

पन्ने की प्रगति अवस्था
आधार
प्रारम्भिक
माध्यमिक
पूर्णता
शोध



टीका टिप्पणी और संदर्भ

सं.ग्रं.-ए.आर. फोरसाइय : थ्योरी ऑव फंक्शंस; डब्ल्यू.एफ. ऑसगुड : कनफार्मल रिप्रेजेंटेशन ऑव सर्फेंस अपॉन अनदर।