"टर्बाइन": अवतरणों में अंतर

अद्‌भुत भारत की खोज
नेविगेशन पर जाएँ खोज पर जाएँ
[अनिरीक्षित अवतरण][अनिरीक्षित अवतरण]
(''''टरबाइन''' घूर्णक मोटर या इंजिन है, जिसमें गैस, जल या भ...' के साथ नया पन्ना बनाया)
 
No edit summary
 
(इसी सदस्य द्वारा किए गए बीच के ७ अवतरण नहीं दर्शाए गए)
पंक्ति १: पंक्ति १:
'''टरबाइन''' घूर्णक मोटर या इंजिन है, जिसमें गैस, जल या भाप की धारा द्वारा, क्रैंक के स्थान पर ईषा बेयरिंग पर घूर्णन करती है। गैस, जल और भाप से जलनेवाले टरबाइन एक दूसरे से भिन्न होते हैं।
{{लेख सूचना
|पुस्तक नाम=हिन्दी विश्वकोश खण्ड 5
|पृष्ठ संख्या=115
|भाषा= हिन्दी देवनागरी
|लेखक =ऐंडू जैमिसन, प्रो. उब्लू. जे लिमहैम
|संपादक=फूलदेव सहाय वर्मा
|आलोचक=
|अनुवादक=
|प्रकाशक=नागरी प्रचारणी सभा वाराणसी
|मुद्रक=नागरी मुद्रण वाराणसी
|संस्करण=सन्‌ 1964 ईसवी
|स्रोत= वाटर ह्वील ऐंड टर्बाइन मशीनरी, खंड ६, मशीनरी पब्लिशिंग कं. लि., लंदन, ऐंडू जैमिसन : हाइड्रॉलिक्स; प्रो. उब्लू. जे लिमहैम: मिकैनिकल इंजीनियरिंग।
|उपलब्ध=भारतडिस्कवरी पुस्तकालय
|कॉपीराइट सूचना=नागरी प्रचारणी सभा वाराणसी
|टिप्पणी=
|शीर्षक 1=लेख सम्पादक
|पाठ 1=चंद्रभूषण मिश्र
|शीर्षक 2=
|पाठ 2=
|अन्य जानकारी=
|बाहरी कड़ियाँ=
|अद्यतन सूचना=
}}


==गैस टरबाइन==
'''टर्बाइन''' घूर्णक मोटर या इंजिन है, जिसमें गैस, जल या भाप की धारा द्वारा, क्रैंक के स्थान पर ईषा बेयरिंग पर घूर्णन करती है। गैस, जल और भाप से जलनेवाले टर्बाइन एक दूसरे से भिन्न होते हैं।
 
==गैस टर्बाइन==
{{tocright}}
{{tocright}}
इस शब्द की विभिन्न परिभाषाएँ दी जाती हैं। विस्तृत परिभाषा के अनुसार गैस टरबाइन वह मूल चालक (prime mover) है जिसके संपूर्ण उष्मीय चक्र में कार्यकारी तरल गैसीय ही बना रहता है एवं जिसके सभी यंत्रांगों की गति परिभ्रमी होती है। संकीर्ण परिभाषा के अनुसार इस शब्द का प्रयोग सिर्फ उस मुख्य टरबाइन अंग के लिये किया जाता है जिसका माध्यम गरम वायु होती है। कुछ विद्वानों के मतानुसार गैस टरबाइन वह यंत्र है जिसमें प्रवाह प्रक्रम अविरत रहता है एवं शक्ति टरबाइन द्वारा प्राप्त होती है।
इस शब्द की विभिन्न परिभाषाएँ दी जाती हैं। विस्तृत परिभाषा के अनुसार गैस टर्बाइन वह मूल चालक (prime mover) है जिसके संपूर्ण उष्मीय चक्र में कार्यकारी तरल गैसीय ही बना रहता है एवं जिसके सभी यंत्रांगों की गति परिभ्रमी होती है। संकीर्ण परिभाषा के अनुसार इस शब्द का प्रयोग सिर्फ उस मुख्य टर्बाइन अंग के लिये किया जाता है जिसका माध्यम गरम वायु होती है। कुछ विद्वानों के मतानुसार गैस टर्बाइन वह यंत्र है जिसमें प्रवाह प्रक्रम अविरत रहता है एवं शक्ति टर्बाइन द्वारा प्राप्त होती है।


====संक्षिप्त इतिहास====
====संक्षिप्त इतिहास====
{{tocright}}
{{tocright}}
प्रथम गैस टरबाइन की निर्माणतिथि अभी तक अज्ञात है किंतु १३० ई. पू. के मिस्र में हीरो ने टरबाइन के सदृश एक ऐसे यंत्र का निर्माण किया था जो गरम वायु की सहायता से चलता था संभवत: प्रथम ज्ञात गैस टरबाइन का निर्माण सन्‌ १५५० ई. में हुआ एवं इसका निर्माता लियोनार्डो दा विंशी था। यह यंत्र चिमनी के पास रखा जाता था और इससे होकर चिमनी की गैस ऊपर जाती थी। इस यंत्र के द्वारा बहुत कम शक्ति प्राप्त होती थी, जिसका उपयोग मांस को भूनने के लिए बने हुए पात्र को चलाने के लिए किया जाता था। गैस टरबाइन का सर्वप्रथम पेटेंट इंग्लैंड में जॉन बारबर ने १७९१ ई. में कराया था। आश्चर्य की बात तो यह है कि उसका बनाया गैस टरबाइन आधुनिक विकसित सिद्धान्त पर आधारित पाया गया है। उसके बाद जॉन डाबेल ने १८०८ ई. में दूसरा पेटेंट इंग्लैंड में ही कराया। १८३७ ई. में पेरिस में ब्रेसन ने एक ऐसे टरबाइन का पेटेंट कराया, जिसमें सभी आवश्यक कल पुर्जे थे। उच्च शक्ति वाले गैसे टरबाइन का निर्माण १८७२ ई० में स्टोल्ज ने किया था, जो बहुपद (multi-stage) अभिक्रिया टरबाइन एवं बहुपद अक्षीय-प्रवाह संपीडक (Arial Flow Compressor) द्वारा युक्त था। उस समय वैज्ञानिकों को वायुगतिकी (Aerodynamics) का ज्ञान कम था, जिसस दक्ष संपीडक का निर्माण संभव नहीं था। संपीडक की डिज़्ााइन सुचारू रूप से न किए जाने के कारण अनेक हानियाँ होती हैं, जिनके कारण टरबाइन द्वारा प्राप्त कार्य का अधिकांश भाग संपीडक को चलाने में ही खर्च हो जाता है और बहुत ही कम शक्ति उपलब्ध होती है। दहनकक्ष की डिजाइन एवं निर्माण भी अधिक विकसित नहीं हो पाया था। अनुसंधानकर्ताओं को इन समस्याओं के सिवाय उपयुक्त निर्माण सामग्री की विकट समस्या का भी सामना करना पड़ता था। इन्हीं सब कारणों से प्रारंभिक गैस टरबाइन सफल नहीं हो पाए।
प्रथम गैस टर्बाइन की निर्माणतिथि अभी तक अज्ञात है किंतु १३० ई. पू. के मिस्र में हीरो ने टर्बाइन के सदृश एक ऐसे यंत्र का निर्माण किया था जो गरम वायु की सहायता से चलता था संभवत: प्रथम ज्ञात गैस टर्बाइन का निर्माण सन्‌ १५५० ई. में हुआ एवं इसका निर्माता लियोनार्डो दा विंशी था। यह यंत्र चिमनी के पास रखा जाता था और इससे होकर चिमनी की गैस ऊपर जाती थी। इस यंत्र के द्वारा बहुत कम शक्ति प्राप्त होती थी, जिसका उपयोग मांस को भूनने के लिए बने हुए पात्र को चलाने के लिए किया जाता था। गैस टर्बाइन का सर्वप्रथम पेटेंट इंग्लैंड में जॉन बारबर ने १७९१ ई. में कराया था। आश्चर्य की बात तो यह है कि उसका बनाया गैस टर्बाइन आधुनिक विकसित सिद्धान्त पर आधारित पाया गया है। उसके बाद जॉन डाबेल ने १८०८ ई. में दूसरा पेटेंट इंग्लैंड में ही कराया। १८३७ ई. में पेरिस में ब्रेसन ने एक ऐसे टर्बाइन का पेटेंट कराया, जिसमें सभी आवश्यक कल पुर्जे थे। उच्च शक्ति वाले गैसे टर्बाइन का निर्माण १८७२ ई० में स्टोल्ज ने किया था, जो बहुपद (multi-stage) अभिक्रिया टर्बाइन एवं बहुपद अक्षीय-प्रवाह संपीडक (Arial Flow Compressor) द्वारा युक्त था। उस समय वैज्ञानिकों को वायुगतिकी (Aerodynamics) का ज्ञान कम था, जिसस दक्ष संपीडक का निर्माण संभव नहीं था। संपीडक की डिज़्ााइन सुचारू रूप से न किए जाने के कारण अनेक हानियाँ होती हैं, जिनके कारण टर्बाइन द्वारा प्राप्त कार्य का अधिकांश भाग संपीडक को चलाने में ही खर्च हो जाता है और बहुत ही कम शक्ति उपलब्ध होती है। दहनकक्ष की डिजाइन एवं निर्माण भी अधिक विकसित नहीं हो पाया था। अनुसंधानकर्ताओं को इन समस्याओं के सिवाय उपयुक्त निर्माण सामग्री की विकट समस्या का भी सामना करना पड़ता था। इन्हीं सब कारणों से प्रारंभिक गैस टर्बाइन सफल नहीं हो पाए।
;प्रथम पेटेंट
;प्रथम पेटेंट
अमरीका में इस टरबाइन का प्रथम पेटेंट चार्ल्स कर्टिस ने १८९५ ई. में कराया था। यह टरबाइन और सभी टरबाइनों से अच्छा प्रमाणित हुआ। उस समय तक वैज्ञानिकों का ध्यान इस क्षेत्र की ओर आकर्षित हो चुका था। इसके बाद अनेक तरह की डिजाइन के गैस टरबाइन बनाए गए, जिनमें निम्नलिखित प्रमुख हैं: १९०५ ई० में फ्रांस में अर्मेगंड और लेमाल द्वारा निर्मित प्रथम बहुपद अपकेंद्रीसंपीडक-युक्त गैस टरबाइन, १९०५ ई. में डा. होल्जवर्थ द्वारा निर्मित स्थिर आयतन टरबाइन, १९०८ ई० में फ्रांस में कर्बोडीन द्वारा निर्मित आवेग (impulse) टरबाइन, १९१३ ई. में बिशाँफ द्वारा निर्मित विस्फोट प्रकार का टरबाइन तथा १९१४ ई. में बिशॉफ द्वारा निर्मित स्थिर-दाब टरबाइन।
अमरीका में इस टर्बाइन का प्रथम पेटेंट चार्ल्स कर्टिस ने १८९५ ई. में कराया था। यह टर्बाइन और सभी टर्बाइनों से अच्छा प्रमाणित हुआ। उस समय तक वैज्ञानिकों का ध्यान इस क्षेत्र की ओर आकर्षित हो चुका था। इसके बाद अनेक तरह की डिजाइन के गैस टर्बाइन बनाए गए, जिनमें निम्नलिखित प्रमुख हैं: १९०५ ई० में फ्रांस में अर्मेगंड और लेमाल द्वारा निर्मित प्रथम बहुपद अपकेंद्रीसंपीडक-युक्त गैस टर्बाइन, १९०५ ई. में डा. होल्जवर्थ द्वारा निर्मित स्थिर आयतन टर्बाइन, १९०८ ई० में फ्रांस में कर्बोडीन द्वारा निर्मित आवेग (impulse) टर्बाइन, १९१३ ई. में बिशाँफ द्वारा निर्मित विस्फोट प्रकार का टर्बाइन तथा १९१४ ई. में बिशॉफ द्वारा निर्मित स्थिर-दाब टर्बाइन।
*उपर्युक्त डिजाइनों के अलावा और भी विभिन्न डिजाइनों के टरबाइनों का विकास होता रहा है। वैज्ञानिकों के अथक प्रयास के फलस्वरूप आज गैस टरबाइन की नींव पक्की हो गर्ह है।
*उपर्युक्त डिजाइनों के अलावा और भी विभिन्न डिजाइनों के टर्बाइनों का विकास होता रहा है। वैज्ञानिकों के अथक प्रयास के फलस्वरूप आज गैस टर्बाइन की नींव पक्की हो गर्ह है।


'''गैस टरबाइन की उष्मागतिकी''' (Thermodynamics) गैस टरबाइन का सबसे सरल रूप चित्र १. में दिखाया गया है। वायु मंडल से वायु संपीडक में प्रवेश करती है, जहाँ इसका संपीड़न होता है। संपीडित वायु को दहनकक्ष में लाया जाता है, जिसमें ईधंन की सहायता से वायु गरम की जाती है। दहन कक्ष से निकलकर गरम वायु टरबाइन में जाती है एवं इस यंत्र के द्वारा कार्य करती है। कार्य करने के बाद वायु बाहर निकल जाती है। दहन करने की दो प्रणालियाँ व्यवहार में लाई जाती हैं :  
'''गैस टर्बाइन की उष्मागतिकी''' (Thermodynamics) गैस टर्बाइन का सबसे सरल रूप चित्र १. में दिखाया गया है। वायु मंडल से वायु संपीडक में प्रवेश करती है, जहाँ इसका संपीड़न होता है। संपीडित वायु को दहनकक्ष में लाया जाता है, जिसमें ईधंन की सहायता से वायु गरम की जाती है। दहन कक्ष से निकलकर गरम वायु टर्बाइन में जाती है एवं इस यंत्र के द्वारा कार्य करती है। कार्य करने के बाद वायु बाहर निकल जाती है। दहन करने की दो प्रणालियाँ व्यवहार में लाई जाती हैं :  
#स्थिर दाब तथा  
#स्थिर दाब तथा  
#स्थिर आयतन।  
#स्थिर आयतन।  
इन दो प्रणालियों में स्थिर दाब चक्र अच्छा पाया गया है। गैसे टरबाइन में व्यवहृत उष्मागतिकी चक्र हैं :  
इन दो प्रणालियों में स्थिर दाब चक्र अच्छा पाया गया है। गैसे टर्बाइन में व्यवहृत उष्मागतिकी चक्र हैं :  
#खुला चक्र  
#खुला चक्र  
#बंद चक्र।  
#बंद चक्र।  
प्रथम प्रकार के चक्र में वायुमंडल से ताजी वायु संपीडक में प्रवेश करती एवं टरबाइन में कार्य करने के बाद वायुमंडल में ही निष्कासित हो जाती है, किंतु दूसरे प्रकार के चक्र में बाहर से ताजी वायु नहीं आती है, वरन्‌ उसी वायु या गैस का बारंबार परिवहन होता है।
प्रथम प्रकार के चक्र में वायुमंडल से ताजी वायु संपीडक में प्रवेश करती एवं टर्बाइन में कार्य करने के बाद वायुमंडल में ही निष्कासित हो जाती है, किंतु दूसरे प्रकार के चक्र में बाहर से ताजी वायु नहीं आती है, वरन्‌ उसी वायु या गैस का बारंबार परिवहन होता है।
*टरबाइन की दक्षता को बढ़ाने के लिए विभिन्न प्रकार के उपकरण व्यवहार में लाए जाते हैं, जिनमें निम्नलिखित मुख्य हैं :
[[चित्र:Model Of Turbine.jpg|thumb|गैस टर्बाइन का चित्र|center]]
*टर्बाइन की दक्षता को बढ़ाने के लिए विभिन्न प्रकार के उपकरण व्यवहार में लाए जाते हैं, जिनमें निम्नलिखित मुख्य हैं :


#उष्मा विनिमयित्र (Heat Exchanger) संपीडक से निकलकर संपीडित वायु इसमें (देखें चित्र २) एक ओर से प्रवेश करती है एवं दूसरी ओर से टरबाइन द्वारा निष्कासित गैस प्रवेश करती है। गैस संपीड़ित वायु से अधिक गरम होती है। इसीलिये ताप गैस से संपीड़ित वायु में प्रवेश करता है तथा संपीडित वायु और भी गरम हो जाती है। संपीडित वायु के अधिक गरम होने से दहनकक्ष में ईधंन की कम आवश्यकता होती है। इससे संपूर्ण संयंत्र की दक्षता बढ़ जाती है।
#उष्मा विनिमयित्र (Heat Exchanger) संपीडक से निकलकर संपीडित वायु इसमें (देखें चित्र २) एक ओर से प्रवेश करती है एवं दूसरी ओर से टर्बाइन द्वारा निष्कासित गैस प्रवेश करती है। गैस संपीड़ित वायु से अधिक गरम होती है। इसीलिये ताप गैस से संपीड़ित वायु में प्रवेश करता है तथा संपीडित वायु और भी गरम हो जाती है। संपीडित वायु के अधिक गरम होने से दहनकक्ष में ईधंन की कम आवश्यकता होती है। इससे संपूर्ण संयंत्र की दक्षता बढ़ जाती है।
#अंत:शीतलक (Intercooler) - संपीड़न के कार्य में कुछ भी कमी होने से उपलब्ध शक्ति की वद्धि हो जाती है, जिससे संयंत्र की दक्षता बढ़ जाती है। संपीड़न के कार्य को कम करने के लिये वायु निम्न दाब संपीड़क में संपीड़ित होकर अंत:शीतलक (देखें चित्र ३) में प्रवेश करती है, जहाँ उसका ताप कम करके उसको उच्च दाब संपीड़क में पुन: संपीड़ित होने के लिये भेजा जाता है।
#अंत:शीतलक (Intercooler) - संपीड़न के कार्य में कुछ भी कमी होने से उपलब्ध शक्ति की वद्धि हो जाती है, जिससे संयंत्र की दक्षता बढ़ जाती है। संपीड़न के कार्य को कम करने के लिये वायु निम्न दाब संपीड़क में संपीड़ित होकर अंत:शीतलक में प्रवेश करती है, जहाँ उसका ताप कम करके उसको उच्च दाब संपीड़क में पुन: संपीड़ित होने के लिये भेजा जाता है।
#पुनस्तापक (Reheater) प्रथम टरबाइन में कार्य करने के बाद गैस पुनस्तापक (देखें चित्र ४) में प्रवेश करती है, जहाँ इसे पुनस्तापित किया जाता है। पुनस्तापक से निकलकर गैस द्वितीय टरबाइन में कार्य करने के लिये प्रवेश करती है।
[[चित्र:Intercooler.jpg|thumb|अंत:शीतलक|center]]
#पुनस्तापक (Reheater) प्रथम टर्बाइन में कार्य करने के बाद गैस पुनस्तापक (देखें चित्र ४) में प्रवेश करती है, जहाँ इसे पुनस्तापित किया जाता है। पुनस्तापक से निकलकर गैस द्वितीय टर्बाइन में कार्य करने के लिये प्रवेश करती है।
[[चित्र:Reheater.jpg|thumb|पुनस्तापक|center]]
==मुख्य अंग==
==मुख्य अंग==
गैस टरबाइन के मुख्य अंग - ये निम्नलिखित हैं :
गैस टर्बाइन के मुख्य अंग - ये निम्नलिखित हैं :
====संपीड़क====
====संपीड़क====
गैस टरबाइन में दो प्रकार के संपीड़क लगाए जाते हैं, अक्षप्रवाह एवं अपकेद्रिक। अक्षप्रवाह संपीड़क का व्यवहार पहले बहुत ही कम होता था, किंतु पिछले कुछ वर्षों में वायुगतिकी विज्ञान का विकास होने से इस तरह के संपीड़क का डिजाइन सरल हो गया है एवं इसकी दक्षता भी बढ़ गई है। औद्योगिक गैस टरबाइन में इस प्रकार के संपीड़क का अधिक व्यवहार होता है, क्योंकि इसके द्वारा उच्च दाब अनुपात एवं उच्च दक्षता की प्राप्ति होती है। अपकेंद्रिक संपीड़क हल्का होने के कारण वायुयान में अधिक व्यवहृत होता है।
गैस टर्बाइन में दो प्रकार के संपीड़क लगाए जाते हैं, अक्षप्रवाह एवं अपकेद्रिक। अक्षप्रवाह संपीड़क का व्यवहार पहले बहुत ही कम होता था, किंतु पिछले कुछ वर्षों में वायुगतिकी विज्ञान का विकास होने से इस तरह के संपीड़क का डिजाइन सरल हो गया है एवं इसकी दक्षता भी बढ़ गई है। औद्योगिक गैस टर्बाइन में इस प्रकार के संपीड़क का अधिक व्यवहार होता है, क्योंकि इसके द्वारा उच्च दाब अनुपात एवं उच्च दक्षता की प्राप्ति होती है। अपकेंद्रिक संपीड़क हल्का होने के कारण वायुयान में अधिक व्यवहृत होता है।


====दहनकक्ष====
====दहनकक्ष====
जैसा ऊपर बताया जा चुका है, इस कक्ष में ईधंन की सहायता से संपीड़ित वायु को गरम किया जाता है। इस अंग की डिज़ाइन अत्यंत नाजुक एवं जटिल होती है।
जैसा ऊपर बताया जा चुका है, इस कक्ष में ईधंन की सहायता से संपीड़ित वायु को गरम किया जाता है। इस अंग की डिज़ाइन अत्यंत नाजुक एवं जटिल होती है।


====टरबाइन====
====टर्बाइन====
इसके द्वारा कार्य प्राप्त होता है। टरबाइन की सहायता से संपीड़क को चलाया जाता है, जिससे टरबाइन में प्राप्त कार्य का कुछ भाग संपीड़क को चलाने में खर्च हो जाता है।
इसके द्वारा कार्य प्राप्त होता है। टर्बाइन की सहायता से संपीड़क को चलाया जाता है, जिससे टर्बाइन में प्राप्त कार्य का कुछ भाग संपीड़क को चलाने में खर्च हो जाता है।


*इसीलिये, उपलब्ध शक्ति = टरबाइन द्वारा प्राप्त कार्य - संपीड़क में खर्च किया हुआ कार्य।
*इसीलिये, उपलब्ध शक्ति = टर्बाइन द्वारा प्राप्त कार्य - संपीड़क में खर्च किया हुआ कार्य।


==गैस टरबाइन की सामग्री==
==गैस टर्बाइन की सामग्री==
गैस टरबाइन की उष्मीय दक्षता टरबाइन में कार्य करनेवाले गैसे के प्रवेशताप पर निर्भर करती है। यह ताप जितना अधिक होगा दक्षता उतनी ही अधिक होगी, किंतु गैस के ताप को बढ़ाने के पहले टरबाइन के फलकों के लिए व्यवहृत सामग्री में भी उस ताप पर कार्य करने की क्षमता होती चाहिए। इस क्षेत्र में गहन अनुसंधान हुए हैं एवं बहुत तरह की नई नई सामग्रियों का विकास हुआ है। ये सामग्रियाँ उच्च ताप एवं उच्च प्रतिबल (stress) की विषम अवस्थाओं में भी सुचारु रूप से कार्य कर पाती हैं।
गैस टर्बाइन की उष्मीय दक्षता टर्बाइन में कार्य करनेवाले गैसे के प्रवेशताप पर निर्भर करती है। यह ताप जितना अधिक होगा दक्षता उतनी ही अधिक होगी, किंतु गैस के ताप को बढ़ाने के पहले टर्बाइन के फलकों के लिए व्यवहृत सामग्री में भी उस ताप पर कार्य करने की क्षमता होती चाहिए। इस क्षेत्र में गहन अनुसंधान हुए हैं एवं बहुत तरह की नई नई सामग्रियों का विकास हुआ है। ये सामग्रियाँ उच्च ताप एवं उच्च प्रतिबल (stress) की विषम अवस्थाओं में भी सुचारु रूप से कार्य कर पाती हैं।


==परिभ्रमक फलक शीतलन==
==परिभ्रमक फलक शीतलन==
नई नई निर्माण सामग्रियों के विकास के साथ ही गैस टरबाइन की उष्मीय दक्षता को बढ़ाने का दूसरा तरीका गरम पुर्जों को ठंडा करना है। परिभ्रमक पर शोधन कार्य हो रहे हैं। खोखले फलकों का निर्माण किया गया है एवं इन्हें संपीड़क द्वारा वायु भेजकर ठंडा किया जाता है। इस तरह से फलकों के साथ ही साथ परिभ्रमक भी ठंडा होता रहता है।
नई नई निर्माण सामग्रियों के विकास के साथ ही गैस टर्बाइन की उष्मीय दक्षता को बढ़ाने का दूसरा तरीका गरम पुर्जों को ठंडा करना है। परिभ्रमक पर शोधन कार्य हो रहे हैं। खोखले फलकों का निर्माण किया गया है एवं इन्हें संपीड़क द्वारा वायु भेजकर ठंडा किया जाता है। इस तरह से फलकों के साथ ही साथ परिभ्रमक भी ठंडा होता रहता है।


==गैस टरबाइन में व्यवहृत ईंधन==
==गैस टर्बाइन में व्यवहृत ईंधन==
गैस टरबाइन में प्राय: सभी प्रकार के ईंधन व्यवहृत होते हैं। पतले तेल को जलाने में कोई कठिनाई नहीं होती। गाढ़े तेल को जलाने के लिये विशेष प्रकार के प्रसाधन की आवश्यकता होती है, क्योंकि इस प्रकार के तेल को जलाते समय अग्रलिखित समस्याओं का सामान करना पड़ता है: तेल में विद्यमान ठोस कणों का दक्षतापूर्वक दहन, टरबाइन फलकों पर राख कर जमा होना तथा टरबाइन फलकों एवं अन्य पुर्जों को तेल के क्षारण प्रभाव से बचाना।
गैस टर्बाइन में प्राय: सभी प्रकार के ईंधन व्यवहृत होते हैं। पतले तेल को जलाने में कोई कठिनाई नहीं होती। गाढ़े तेल को जलाने के लिये विशेष प्रकार के प्रसाधन की आवश्यकता होती है, क्योंकि इस प्रकार के तेल को जलाते समय अग्रलिखित समस्याओं का सामान करना पड़ता है: तेल में विद्यमान ठोस कणों का दक्षतापूर्वक दहन, टर्बाइन फलकों पर राख कर जमा होना तथा टर्बाइन फलकों एवं अन्य पुर्जों को तेल के क्षारण प्रभाव से बचाना।


==गैस टरबाइन की उपयोगिता==
==गैस टर्बाइन की उपयोगिता==
गैस टरबाइन मूलचालक है। यह परिभ्रमी प्रकार का यंत्र है। इसीलिये पश्चाग्र (reciprocating) मूलचालकों की अपेक्षा इसमें घर्षणहानि बहुत ही कम होती है। गैस टरबाइन की यांत्रिक दक्षता ९५ से ९७ प्रति शत तक होती है, जब की अंतर्दहन इंजन की दक्षता ८० से ८५ प्रति शत तक ही हो पाती है। गैस टरबाइन का संतुलन अच्छा रहता है, जिससे इसमें कंपन कम होता है। अन्यान्य मूल चालकों की तुलना में यह दीर्घायु होता है। विद्युदुत्पादन के सिवाय लोकोमोटिव, (locomotive रेल के इंजन), मोटरगाड़ी जलयान, वायुयान आदि के मूल चालक के रूप में इसका व्यवहार किया जाता है।
गैस टर्बाइन मूलचालक है। यह परिभ्रमी प्रकार का यंत्र है। इसीलिये पश्चाग्र (reciprocating) मूलचालकों की अपेक्षा इसमें घर्षणहानि बहुत ही कम होती है। गैस टर्बाइन की यांत्रिक दक्षता ९५ से ९७ प्रति शत तक होती है, जब की अंतर्दहन इंजन की दक्षता ८० से ८५ प्रति शत तक ही हो पाती है। गैस टर्बाइन का संतुलन अच्छा रहता है, जिससे इसमें कंपन कम होता है। अन्यान्य मूल चालकों की तुलना में यह दीर्घायु होता है। विद्युदुत्पादन के सिवाय लोकोमोटिव, (locomotive रेल के इंजन), मोटरगाड़ी जलयान, वायुयान आदि के मूल चालक के रूप में इसका व्यवहार किया जाता है।


==गैस टरबाइन की समस्याएँ==
==गैस टर्बाइन की समस्याएँ==
गैस टरबाइन की उष्मीय दक्षता अब भी कम ही होती है। यद्यपि गैस टरबाइन युक्त यंत्र की चाल की दिशा बदलने के लिए बहुत तरह के उपसाधन निकाले गए हैं तथापि यह सुगमतापूर्वक बदली नहीं जा सकती। गैस टरबाइन स्वत:प्रवर्ती (self-starting) मूलचालक नहीं है। इसके अलावा एक समस्या यह भी है कि गैस टरबाइन की दक्षता, शक्ति की माँग के कम होने से, कम हो जाती है। परंतु ये समस्याएँ असाध्य नहीं हैं। आजकल भी शोधनकार्य हो रहे हैं एवं आशा की जाती है कि कुछ वर्षों में गैस टरबाइन सर्वोत्तम मूल चालकयंत्र हो जायगा। (चं. भू. मि.)
गैस टर्बाइन की उष्मीय दक्षता अब भी कम ही होती है। यद्यपि गैस टर्बाइन युक्त यंत्र की चाल की दिशा बदलने के लिए बहुत तरह के उपसाधन निकाले गए हैं तथापि यह सुगमतापूर्वक बदली नहीं जा सकती। गैस टर्बाइन स्वत:प्रवर्ती (self-starting) मूलचालक नहीं है। इसके अलावा एक समस्या यह भी है कि गैस टर्बाइन की दक्षता, शक्ति की माँग के कम होने से, कम हो जाती है। परंतु ये समस्याएँ असाध्य नहीं हैं। आजकल भी शोधनकार्य हो रहे हैं एवं आशा की जाती है कि कुछ वर्षों में गैस टर्बाइन सर्वोत्तम मूल चालकयंत्र हो जायगा। (चं. भू. मि.)
==जल टरबाइन==
==जल टर्बाइन==


====जल टरबाइन या जलचक्र====
====जल टर्बाइन या जलचक्र====
उन मूल चालक यंत्रों (prime movers) को कहते हैं जो जलराशि में निहित स्थितिज ऊर्जा को यांत्रिक कार्य में परिवर्तित कर देते हैं। पनचक्कियाँ विभिन्न प्रकार से बनाई जाने पर भी बड़ी ही सरल प्रकार की युक्तियाँ (devices) हैं, जिनका प्रयोग प्रागैतिहासिक काल से ही शक्ति उत्पादन करने के लिए होता चला आया है। समय समय पर आवश्यकताओं तथा परिस्थितियों से प्रेरित होकर लोगों ने इनमें अनेक सुधार किए, अत: जल टरबाइन भी पनचक्की का ही विकसित रूप है। पिछली अर्धशताब्दी से तो इनका इतना उपयोग बढ़ गया है कि इनके द्वारा लगभग सभी सभ्य देशों में जगह जगह, छोटे बड़े अनेक जल-विद्युच्छक्ति-गृह बनाए जाने लगे। इस कारण सुदूर जलहीन देहातों में भी बड़े सस्ते भाव पर बिजली प्राप्त होने लगी और नाना प्रकार के उद्योग धंधों के विकास को प्रत्साहन मिला।
उन मूल चालक यंत्रों (prime movers) को कहते हैं जो जलराशि में निहित स्थितिज ऊर्जा को यांत्रिक कार्य में परिवर्तित कर देते हैं। पनचक्कियाँ विभिन्न प्रकार से बनाई जाने पर भी बड़ी ही सरल प्रकार की युक्तियाँ (devices) हैं, जिनका प्रयोग प्रागैतिहासिक काल से ही शक्ति उत्पादन करने के लिए होता चला आया है। समय समय पर आवश्यकताओं तथा परिस्थितियों से प्रेरित होकर लोगों ने इनमें अनेक सुधार किए, अत: जल टर्बाइन भी पनचक्की का ही विकसित रूप है। पिछली अर्धशताब्दी से तो इनका इतना उपयोग बढ़ गया है कि इनके द्वारा लगभग सभी सभ्य देशों में जगह जगह, छोटे बड़े अनेक जल-विद्युच्छक्ति-गृह बनाए जाने लगे। इस कारण सुदूर जलहीन देहातों में भी बड़े सस्ते भाव पर बिजली प्राप्त होने लगी और नाना प्रकार के उद्योग धंधों के विकास को प्रत्साहन मिला।


जिन सिद्धांतों के आधार पर इन संयंत्रों की अभिकल्पना की जाती है, वे सभी प्रकार के प्रथम चालक यंत्रों में लागू होते हैं, जिनका विवेचन भाप इंजन ओर भाप टरबाइन शीर्षक लेखों में विस्तार से किया गया है। इनके अतिरिक्त बाँध, जलीयशक्ति पोषण, जलविज्ञान और जलइंजीनियरी शीर्षक लेख भी द्रष्टव्य हैं, जिनमें जल की स्थितिज तथा गतिज ऊर्जा, बहाब आदि का विषय विस्तार से समझाया गया है।
जिन सिद्धांतों के आधार पर इन संयंत्रों की अभिकल्पना की जाती है, वे सभी प्रकार के प्रथम चालक यंत्रों में लागू होते हैं, जिनका विवेचन भाप इंजन ओर भाप टर्बाइन शीर्षक लेखों में विस्तार से किया गया है। इनके अतिरिक्त बाँध, जलीयशक्ति पोषण, जलविज्ञान और जलइंजीनियरी शीर्षक लेख भी द्रष्टव्य हैं, जिनमें जल की स्थितिज तथा गतिज ऊर्जा, बहाब आदि का विषय विस्तार से समझाया गया है।


जल राशि में निहित स्थितिज ऊर्जा का गतिज ऊर्जा में परिवर्तन कैसे होता है, इसे संक्षेप में समझने के लिए कल्पना कीजिए कि कुछ ऊँचाई पर स्थित एक टंकी में से पानी की एक धारा उसी के नीचे स्थित जलाशय में गिर रही है। इस टंकी में भरे प्रति पाउंड पानी में, ऊँचाई के कारण कुछ फुट-पाउंड स्थितिज ऊर्जा निहित है। जब यह पानी नीचे गिरता है तब नीचे गिरते समय, यह स्थितिज ऊर्जा क्रमश: गतिज ऊर्जा में परिवर्तित होने लगती है और जब वह धारा नीचेवाले जलाशय की जलतल रेखा पर पहुँचती है तब उसकी समस्त स्थितिज ऊर्जा गतिज ऊर्जा में परिणत हो चुकती है। इस जल-तल-रेखा तक पहुँचते समय यदि उस एक पाउंड पानी का वेग व (V) फुट प्रति सेंकड हो तो उसमें फुट पाउंड गतिज ऊर्जा होगी। यदि टंकी की ऊँचाई उ (h) फुट मान लें तो टंकी के प्रति पाउंड पानी में ऊ(H) फुट पाउंड स्थितिज ऊर्जा होगी। अत: नीचे पहुँचने पर।
जल राशि में निहित स्थितिज ऊर्जा का गतिज ऊर्जा में परिवर्तन कैसे होता है, इसे संक्षेप में समझने के लिए कल्पना कीजिए कि कुछ ऊँचाई पर स्थित एक टंकी में से पानी की एक धारा उसी के नीचे स्थित जलाशय में गिर रही है। इस टंकी में भरे प्रति पाउंड पानी में, ऊँचाई के कारण कुछ फुट-पाउंड स्थितिज ऊर्जा निहित है। जब यह पानी नीचे गिरता है तब नीचे गिरते समय, यह स्थितिज ऊर्जा क्रमश: गतिज ऊर्जा में परिवर्तित होने लगती है और जब वह धारा नीचेवाले जलाशय की जलतल रेखा पर पहुँचती है तब उसकी समस्त स्थितिज ऊर्जा गतिज ऊर्जा में परिणत हो चुकती है। इस जल-तल-रेखा तक पहुँचते समय यदि उस एक पाउंड पानी का वेग व (V) फुट प्रति सेंकड हो तो उसमें फुट पाउंड गतिज ऊर्जा होगी। यदि टंकी की ऊँचाई उ (h) फुट मान लें तो टंकी के प्रति पाउंड पानी में ऊ(H) फुट पाउंड स्थितिज ऊर्जा होगी। अत: नीचे पहुँचने पर।
पंक्ति ६२: पंक्ति ८९:
*स्थितिज ऊर्जा की हानि = गतिज ऊर्जा की प्राप्ति, अर्थात्‌
*स्थितिज ऊर्जा की हानि = गतिज ऊर्जा की प्राप्ति, अर्थात्‌


अब ज्यों ही वह पानी जलाशय में प्रविष्ट होगा, उसके पानी में विक्षोभ उत्पन्न हो जाएगा और फिर थोड़ी देर में शांत भी हो जायगा। इस उदाहरण में, ऊपर से आनेवाले पानी में निहित गतिज ऊर्जा जलाशय के पानी में विक्षोभ उत्पन्न करके ही बरबाद हो गई और उससे कोई उपयोगी कार्य नहीं हो सका। यदि वही पानी एक नल में से होकर नीचे आता तो वह उस नल के मुहाने पर दाब उत्पन्न कर किसी जलचक्र अथवा इंजन को चला सकता था। जब भी किसी स्थान पर जल के प्रवाह अथवा वर्चस (head) द्वारा प्राप्त ऊर्जा की सहायता से कोई जलचालित मोटर या टरबाइन चलाकर शक्ति उन्पादन करने का विचार किया जाता है, तो उसके पहले आस पास में स्थित जलराशि अथवा जलस्रोतों से प्राप्त होने वाली ऊर्जा का यथासाध्य सही अनुमान लगा लिया जाता है। (देखें जलइंजीनियरी और बांध)।
अब ज्यों ही वह पानी जलाशय में प्रविष्ट होगा, उसके पानी में विक्षोभ उत्पन्न हो जाएगा और फिर थोड़ी देर में शांत भी हो जायगा। इस उदाहरण में, ऊपर से आनेवाले पानी में निहित गतिज ऊर्जा जलाशय के पानी में विक्षोभ उत्पन्न करके ही बरबाद हो गई और उससे कोई उपयोगी कार्य नहीं हो सका। यदि वही पानी एक नल में से होकर नीचे आता तो वह उस नल के मुहाने पर दाब उत्पन्न कर किसी जलचक्र अथवा इंजन को चला सकता था। जब भी किसी स्थान पर जल के प्रवाह अथवा वर्चस (head) द्वारा प्राप्त ऊर्जा की सहायता से कोई जलचालित मोटर या टर्बाइन चलाकर शक्ति उन्पादन करने का विचार किया जाता है, तो उसके पहले आस पास में स्थित जलराशि अथवा जलस्रोतों से प्राप्त होने वाली ऊर्जा का यथासाध्य सही अनुमान लगा लिया जाता है। (देखें जलइंजीनियरी और बांध)।
====वर्गीकरण====
====वर्गीकरण====
जलचालित मोटरों का वर्गीकरण - यह वर्गीकरण निम्नलिखित प्रकार है :
जलचालित मोटरों का वर्गीकरण - यह वर्गीकरण निम्नलिखित प्रकार है :
#जलधारा के प्रवाह तथा गुरुत्वाकर्षण जनित ऊर्जा चालित चक्र - ये चक्र जलधारा के प्रवाह में रुकावट डालने पर होलेवाले संघट्टन (impact) अथवा चक्र की डोलचियों में भरे पानी के भार के कारण चला करते हैं।
#जलधारा के प्रवाह तथा गुरुत्वाकर्षण जनित ऊर्जा चालित चक्र - ये चक्र जलधारा के प्रवाह में रुकावट डालने पर होलेवाले संघट्टन (impact) अथवा चक्र की डोलचियों में भरे पानी के भार के कारण चला करते हैं।
#आवेगचक्र (Impulse Wheels) और टरबाइन - ये किसी तुंग (nozzle) में से निकलनेवाली पानी की अत्यधिक वेगयुक्त प्रधार (jet) की गतिज ऊर्जा द्वारा चलते हैं। इस प्रकार के आवेगचक्रों का वहीं उपयोग होता है जहाँ पर पानी की मात्रा तो सीमित होती है लेकिन उसका वर्चस्‌ ३०० से ३,००० फुट तक ऊँचा होता है।
#आवेगचक्र (Impulse Wheels) और टर्बाइन - ये किसी तुंग (nozzle) में से निकलनेवाली पानी की अत्यधिक वेगयुक्त प्रधार (jet) की गतिज ऊर्जा द्वारा चलते हैं। इस प्रकार के आवेगचक्रों का वहीं उपयोग होता है जहाँ पर पानी की मात्रा तो सीमित होती है लेकिन उसका वर्चस्‌ ३०० से ३,००० फुट तक ऊँचा होता है।
#प्रतिक्रिया टरबाइन (Reaction Turbine) - इसमें पानी की गतिज ऊर्जा तथा दाब दोनों का ही उपयोग होता है। ये वहीं लगाए जाते हैं जहाँ परिस्थितियाँ आवेगचक्र तथा आवेग टरबाइनों के लिए बताई परिस्थितियों से विपरीत होती हैं, अर्थात्‌ जहाँ पानी अल्प वर्चस्‌ युक्त होते हुए भी विपुल मात्रा में प्राप्त हो सकता है। इस पानी का वर्चस्‌ ५ से लेकर ५०० फुट तक हो सकता है।
#प्रतिक्रिया टर्बाइन (Reaction Turbine) - इसमें पानी की गतिज ऊर्जा तथा दाब दोनों का ही उपयोग होता है। ये वहीं लगाए जाते हैं जहाँ परिस्थितियाँ आवेगचक्र तथा आवेग टर्बाइनों के लिए बताई परिस्थितियों से विपरीत होती हैं, अर्थात्‌ जहाँ पानी अल्प वर्चस्‌ युक्त होते हुए भी विपुल मात्रा में प्राप्त हो सकता है। इस पानी का वर्चस्‌ ५ से लेकर ५०० फुट तक हो सकता है।
 
[[चित्र:Reaction Turbine.jpg|thumb|center|प्रतिक्रिया टर्बाइन]]
जलधारा के प्रवाह तथा गुरुत्वाकर्षण जनित ऊर्जा से चलनेवाले चक्रों का उपयोग तो अब देहातों में कुटीर उद्योगों के उपयुक्त ही समझा जाता है, विशेषकर उन पहाड़ी प्रांतों में जहाँ निरंतर झरने बहते रहते हैं। इस प्रकार के चक्रों में अध:प्रवाही (Under-shot), पॉन्सले (Poncelet) मध्यप्रवाही (Breast-wheel) और ऊर्ध्वप्रवाही (Over-shot) चक्र प्रमुख हैं,
जलधारा के प्रवाह तथा गुरुत्वाकर्षण जनित ऊर्जा से चलनेवाले चक्रों का उपयोग तो अब देहातों में कुटीर उद्योगों के उपयुक्त ही समझा जाता है, विशेषकर उन पहाड़ी प्रांतों में जहाँ निरंतर झरने बहते रहते हैं। इस प्रकार के चक्रों में अध:प्रवाही (Under-shot), पॉन्सले (Poncelet) मध्यप्रवाही (Breast-wheel) और ऊर्ध्वप्रवाही (Over-shot) चक्र प्रमुख हैं,


चित्र ५.
.


लेकिन बड़ी मात्रा में विद्युदुत्पादन के लिए ये सर्वथा अनुपयुक्त समझे जाते हैं, फिर भी सहायक मोटर के रूप में, बड़े बिजलीघरों में, ऊर्ध्वप्रवाही चक्र का उपयोग, आवश्यकता पड़ने पर, आधुनिक संयंत्रों के साथ कर लिया जाता है।
लेकिन बड़ी मात्रा में विद्युदुत्पादन के लिए ये सर्वथा अनुपयुक्त समझे जाते हैं, फिर भी सहायक मोटर के रूप में, बड़े बिजलीघरों में, ऊर्ध्वप्रवाही चक्र का उपयोग, आवश्यकता पड़ने पर, आधुनिक संयंत्रों के साथ कर लिया जाता है।
:अध: प्रवाही चक्र - इस प्रकार के चक्र का सैद्धांतिक आरेखचित्र ५. में दिखाया गया है, जिसकी कार्यक्षमता लगभग २५ प्रति शत ही होने पाती है, क्योंकि इसमें पानी की बहुत सी ऊर्जा व्यर्थ में नष्ट हो जाती है। १,८०० ई० तक इसका उपयोग बहुत हुआ करता था।
:अध: प्रवाही चक्र - इस प्रकार के चक्र का सैद्धांतिक आरेखचित्र ५. में दिखाया गया है, जिसकी कार्यक्षमता लगभग २५ प्रति शत ही होने पाती है, क्योंकि इसमें पानी की बहुत सी ऊर्जा व्यर्थ में नष्ट हो जाती है। १,८०० ई० तक इसका उपयोग बहुत हुआ करता था।


चित्र .
[[चित्र:Reaction Turbine 1.jpg|thumb|center|प्रतिक्रिया टर्बाइन]]


====पॉन्सले का चक्र====
====पॉन्सले का चक्र====
पंक्ति ८२: पंक्ति १०९:
====मध्यप्रवाही चक्र====
====मध्यप्रवाही चक्र====
इस प्रकार के चक्र का सैद्धांतिक आरेखचित्र ७. में दिखाया गया है। यह भी अध:प्रवाही चक्र का ही परिष्कृत रूप है। इसकी कोनियानुमा पंखुड़ियों में पानी, चक्र की धुरी के तल से कुछ ऊँचाई पर स्थित पंखुड़ियों में भरना
इस प्रकार के चक्र का सैद्धांतिक आरेखचित्र ७. में दिखाया गया है। यह भी अध:प्रवाही चक्र का ही परिष्कृत रूप है। इसकी कोनियानुमा पंखुड़ियों में पानी, चक्र की धुरी के तल से कुछ ऊँचाई पर स्थित पंखुड़ियों में भरना
 
[[चित्र:Turbine Model.jpg|thumb|center|मध्यप्रवाही चक्र आरेखचित्र]]
 
 
 
चित्र .


आरंभ होता है और उनके नीचे आने तक उन्हों में भरा रहता है। चक्र की खोल भी इस पानी को उनमें भरा रखने में कुछ सहायता करती है, अत: यह चक्र मुख्यतया पानी के भार के कारण ही घूमता है। मध्यप्रवाही चक्र भी दो प्रकार के होते हैं। एक तो मध्योच्च प्रवाही (High Breast), जैसा उपर्युक्त वर्णित चित्र में दिखाया गया है और दूसरा अध:मध्यप्रवाही (Low Breast) कहलाता है। इसकी पंखुड़ियों में पानी धुरी के तल से कुछ नीचे की पंखुड़ियों में भरना आरंभ होता है, जिसमें पानी के भार और प्रवाहजनित, दोनों प्रकार की, ऊर्जाओं का उपयोग होता है। इन चक्रों की कार्यक्षमता ५० प्रति शत से लेकर ८० प्रति शत तक हो सकती है, जो इनकी बनावट तथा आकार पर निर्भर करती है। इनका प्रयोग १९वीं शताब्दी के मध्य तक होता रहा, फिर बंद हो गया।
आरंभ होता है और उनके नीचे आने तक उन्हों में भरा रहता है। चक्र की खोल भी इस पानी को उनमें भरा रखने में कुछ सहायता करती है, अत: यह चक्र मुख्यतया पानी के भार के कारण ही घूमता है। मध्यप्रवाही चक्र भी दो प्रकार के होते हैं। एक तो मध्योच्च प्रवाही (High Breast), जैसा उपर्युक्त वर्णित चित्र में दिखाया गया है और दूसरा अध:मध्यप्रवाही (Low Breast) कहलाता है। इसकी पंखुड़ियों में पानी धुरी के तल से कुछ नीचे की पंखुड़ियों में भरना आरंभ होता है, जिसमें पानी के भार और प्रवाहजनित, दोनों प्रकार की, ऊर्जाओं का उपयोग होता है। इन चक्रों की कार्यक्षमता ५० प्रति शत से लेकर ८० प्रति शत तक हो सकती है, जो इनकी बनावट तथा आकार पर निर्भर करती है। इनका प्रयोग १९वीं शताब्दी के मध्य तक होता रहा, फिर बंद हो गया।


====उर्ध्व प्रवाही चक्र====
====उर्ध्व प्रवाही चक्र====
इस प्रकार के चक्र का सैद्धांतिक आरेखचित्र ८ में दिखाया गया है। इसका कार्यक्षमता ७० प्रतिशत से लेकर ८५ प्रतिशत तक पहुँच जाती है, जो आधुनिक जल टरबाइनों के लगभग समकक्ष ही है यह अपेक्षाकृत आधुनिक प्रकार का गुरुत्वाकर्षणजनित ऊर्जाचालित जलचक्र है, जिसका प्रयोग थोड़ी मात्रा में विद्युच्छक्ति उत्पन्न करने के लिए आजकल भी सहायक मोटर के रूप में होता है तथा अच्छा काम देता है।
इस प्रकार के चक्र का सैद्धांतिक आरेखचित्र ८ में दिखाया गया है। इसका कार्यक्षमता ७० प्रतिशत से लेकर ८५ प्रतिशत तक पहुँच जाती है, जो आधुनिक जल टर्बाइनों के लगभग समकक्ष ही है यह अपेक्षाकृत आधुनिक प्रकार का गुरुत्वाकर्षणजनित ऊर्जाचालित जलचक्र है, जिसका प्रयोग थोड़ी मात्रा में विद्युच्छक्ति उत्पन्न करने के लिए आजकल भी सहायक मोटर के रूप में होता है तथा अच्छा काम देता है।


==आवेगचक्र और टरबाइन==
==आवेगचक्र और टर्बाइन==
आधुनिक प्रकार के आवेग चक्र पॉन्सले के अध:प्रवाही चक्र के परिष्कृत रूप हैं। इनमें स्लूस मार्ग (sluice way) के स्थान पर तुड़ों का उपयोग किया जाता है, जिनमें से पानी की प्रधार (jet) बड़े बेग से निकलकर चक्र की पंखुड़ियों से टकराती है। इस ढंग के जिस संयंत्र का सर्वाधिक प्रचार है वह पेल्टन चक्र (Pelton's Wheel) के नाम से प्रसिद्ध है, जिसका सैद्धान्तिक आरेख चित्र ९. क में दिखाया गया है और ९ ख में उसकी एक डोलची (bucket) तथा पानी की धार का आरेख है। डोलची को दो जुड़वाँ प्यालों के रूप में इस प्रकार बना दिया गया है कि पानी की प्रधार उसके मध्य में टकराते ही फटकर, दो भागों में विभक्त होकर , एक दूसरी से लगभग १८० डिग्री के कोणांतर पर चलने लगती है। यदि ये दोनों उपप्रधाराएँ अपनी मूल प्रधारा से बिलकुल विपरीत दिशा में बह निकले तो अवश्य ही पेल्टन चक्र की कार्यक्षमता १०० प्रति शत हो जाय, लेकिन इन्हें जान बूझकर तिरछा करके निकाला जाता है, जिससे ये अपने पासवाली डोलची से टकराएँ नहीं। ऐसा करने से अवश्य ही कुछ ऊर्जा घर्षण में बरबाद हो जाती है, जिससे इस चक्र की कार्य-क्षमता लगभग ८० प्रतिशत ही रह जाती है।
आधुनिक प्रकार के आवेग चक्र पॉन्सले के अध:प्रवाही चक्र के परिष्कृत रूप हैं। इनमें स्लूस मार्ग (sluice way) के स्थान पर तुड़ों का उपयोग किया जाता है, जिनमें से पानी की प्रधार (jet) बड़े बेग से निकलकर चक्र की पंखुड़ियों से टकराती है। इस ढंग के जिस संयंत्र का सर्वाधिक प्रचार है वह पेल्टन चक्र (Pelton's Wheel) के नाम से प्रसिद्ध है, जिसका सैद्धान्तिक आरेख चित्र ९. क में दिखाया गया है और ९ ख में उसकी एक डोलची (bucket) तथा पानी की धार का आरेख है। डोलची को दो जुड़वाँ प्यालों के रूप में इस प्रकार बना दिया गया है कि पानी की प्रधार उसके मध्य में टकराते ही फटकर, दो भागों में विभक्त होकर , एक दूसरी से लगभग १८० डिग्री के कोणांतर पर चलने लगती है। यदि ये दोनों उपप्रधाराएँ अपनी मूल प्रधारा से बिलकुल विपरीत दिशा में बह निकले तो अवश्य ही पेल्टन चक्र की कार्यक्षमता १०० प्रति शत हो जाय, लेकिन इन्हें जान बूझकर तिरछा करके निकाला जाता है, जिससे ये अपने पासवाली डोलची से टकराएँ नहीं। ऐसा करने से अवश्य ही कुछ ऊर्जा घर्षण में बरबाद हो जाती है, जिससे इस चक्र की कार्य-क्षमता लगभग ८० प्रतिशत ही रह जाती है।
==गर्गार्ड टरबाइन (Girgard Turbine)==
[[चित्र:Turbine.jpg|thumb|center|आवेगचक्र का आरेख चित्र]]
इस टरबाइन की खड़ी तथा आड़ी काट क्रमश: चित्र १०. क और ख में दिखाई गई है। इसमें प चिह्नित मार्ग से पानी प्रविष्ट होता है, फ टोंटी है और ब चक्र पर लगे पंख (blades) हैं। इन तुंडों में प्रवेश करते समय, बाहर निकलते समय की अपेक्षा, पानी का वेग बहुत अधिक होता है। अत: बाहर की तरफ उनका रास्ता क्रमश: चौड़ा कर दिया जाता है। संयुक्त राज्य, अमरीका में इस टरबाइन का निर्माण 'विक्टर उच्चदाब टरबाइन' नाम से किया जाता है, जिसकी कार्यक्षमता ७० प्रतिशत से लेकर ८० प्रतिशत तक, उसके अभिकल्प तथा आकार के अनुसार होती है।
==गर्गार्ड टर्बाइन==
;प्रतिक्रिया टरबाइन (Reaction Turbine) - इसका सिद्धांत भाप टरबाइन के लेख में समझाया जगया है। आवेगचक्र में
गर्गार्ड टर्बाइन (Girgard Turbine) की खड़ी तथा आड़ी काट क्रमश: चित्र १०. क और ख में दिखाई गई है। [[चित्र:Girgard Turbine.jpg|thumb|center|गर्गार्ड टर्बाइन]]
 
इसमें प चिह्नित मार्ग से पानी प्रविष्ट होता है, फ टोंटी है और ब चक्र पर लगे पंख (blades) हैं। इन तुंडों में प्रवेश करते समय, बाहर निकलते समय की अपेक्षा, पानी का वेग बहुत अधिक होता है। अत: बाहर की तरफ उनका रास्ता क्रमश: चौड़ा कर दिया जाता है। संयुक्त राज्य, अमरीका में इस टर्बाइन का निर्माण 'विक्टर उच्चदाब टर्बाइन' नाम से किया जाता है, जिसकी कार्यक्षमता ७० प्रतिशत से लेकर ८० प्रतिशत तक, उसके अभिकल्प तथा आकार के अनुसार होती है।
श्
[[चित्र:Girgard Turbine 1.jpg|center|]]
;प्रतिक्रिया टर्बाइन (Reaction Turbine) -  
इसका सिद्धांत भाप टर्बाइन के लेख में समझाया जगया है। आवेगचक्र में


श्


श्


चित्र १२ क, ख


तो पानी की गत्यात्मक ऊर्जा ही काम करती है, लेकिन अभिक्रियात्मक
तो पानी की गत्यात्मक ऊर्जा ही काम करती है, लेकिन अभिक्रियात्मक


श्
श्
श्


चित्र १३


चक्र में गयात्मक तथा दाबजनित दोनों ही प्रकार की ऊर्जाएँ सम्मिलित रूप से काम करती हैं। पाठकों ने चित्र ११ जैसा बगीचों में पानी छिड़कने का घूमनेवाला फुहारा देखा होगा। स्काँच मिल और वार्कर मिलें इसी सिद्धांत पर बनाई गई थीं, जो आदिम प्रकार की अभिक्रियात्मक टरबाइनें थी। चित्र में दिखाए गए फुहारे में तो केवल चार ही शाखाएँ हैं, लेकिन उक्त यंत्रों में इतनी अधिक शाखाएँ लगा दी गई कि उनके सम्मेलन से पूरा एक चक्र ही बन गया था।


प्रतिक्रियात्मक टरबाइनें पानी के प्रवाह के दिशानुसार निम्नलिखित चार मुख्य वर्गों में बाँटी जा सकती हैं : १. त्रैज्य बहिर्प्रवाही,


श्
चक्र में गयात्मक तथा दाबजनित दोनों ही प्रकार की ऊर्जाएँ सम्मिलित रूप से काम करती हैं। पाठकों ने चित्र ११ जैसा बगीचों में पानी छिड़कने का घूमनेवाला फुहारा देखा होगा। स्काँच मिल और वार्कर मिलें इसी सिद्धांत पर बनाई गई थीं, जो आदिम प्रकार की अभिक्रियात्मक टर्बाइनें थी। चित्र में दिखाए गए फुहारे में तो केवल चार ही शाखाएँ हैं, लेकिन उक्त यंत्रों में इतनी अधिक शाखाएँ लगा दी गई कि उनके सम्मेलन से पूरा एक चक्र ही बन गया था।


२. त्रैज्य अंत:प्रवाही, ३. अक्षीय प्रवाही और ४. मिश्रप्रवाही।
प्रतिक्रियात्मक टर्बाइनें पानी के प्रवाह के दिशानुसार निम्नलिखित चार मुख्य वर्गों में बाँटी जा सकती हैं : १. त्रैज्य बहिर्प्रवाही, २. त्रैज्य अंत:प्रवाही, ३. अक्षीय प्रवाही और ४. मिश्रप्रवाही।
[[चित्र:Reaction Turbine 2.jpg|center|]]
====फूर्नेरॉन का टर्बाइन====
फूर्नेरॉन (Fourneyron) नामक एक फ्रांसीसी इंजीनियर ने बार्कर मिल के सिद्धांतानुसार केद्रीय


====फूर्नेरॉन (Fourneyron) का टरबाइन====
फूर्नेरॉन नामक एक फ्रांसीसी इंजीनियर ने बार्कर मिल के सिद्धांतानुसार केद्रीय


चित्र १५.


जलमार्ग से बाहर की तरफ त्रैज्य दिशा में बहने के लिए मार्गदर्शक तुंडों को तो स्थिर प्रकार का बनाकर, उनके बाहर की तरफ घूमनेवाला पंखुडीयुक्त चक्र बनाया, जैसा चित्र १२ क. की खड़ी काट और उसी के नीचे १२ ख. चिह्नित प्लान में दिखाया है,
जलमार्ग से बाहर की तरफ त्रैज्य दिशा में बहने के लिए मार्गदर्शक तुंडों को तो स्थिर प्रकार का बनाकर, उनके बाहर की तरफ घूमनेवाला पंखुडीयुक्त चक्र बनाया, जैसा चित्र १२ क. की खड़ी काट और उसी के नीचे १२ ख. चिह्नित प्लान में दिखाया है,
[[चित्र:Fourneyron.jpg|thumb|center|फूर्नेरॉन]]
इसमें प केंद्रीय कक्ष है, जिसमें पानी प्रविष्ट होकर त्रैज्य दिशा में फ चिह्नित तुंड में जाकर चक्र की ब चिह्नित पंखों को घुमाता हुआ बाहर निकल जाता है। इसमें घ केंद्रीय धुरा है, जिससे डायनेमो आदि संबंधित रहता है। यह त्रैज्य बहिर्प्रवाही टर्बाइन का नमूना है।


इसमें प केंद्रीय कक्ष है, जिसमें पानी प्रविष्ट होकर त्रैज्य दिशा में फ चिह्नित तुंड में जाकर चक्र की ब चिह्नित पंखों को घुमाता हुआ बाहर निकल जाता है। इसमें घ केंद्रीय धुरा है, जिससे डायनेमो आदि संबंधित रहता है। यह त्रैज्य बहिर्प्रवाही टरबाइन का नमूना है।
जूवाल (Jouval) का अक्षीय प्रवाहयुक्त टर्बाइन - इसकी खड़ी काट चित्र ९ में दिखाई गई है, जिसके विभिन्न अवयवों के
 
जूवाल (Jouval) का अक्षीय प्रवाहयुक्त टरबाइन - इसकी खड़ी काट चित्र ९ में दिखाई गई है, जिसके विभिन्न अवयवों के
 
श्
 
श्


श्


चित्र १७.
चित्र १७.


संकेताक्षर पूर्ववर्णित टरबाइन चित्र जेसे ही हैं। इसमें पानी का प्रवाह, जैसा बाणचिह्न्‌ों द्वारा प्रदर्शित किया गया है, अक्ष के समांतर ही रहता है।
संकेताक्षर पूर्ववर्णित टर्बाइन चित्र जेसे ही हैं। इसमें पानी का प्रवाह, जैसा बाणचिन्हों द्वारा प्रदर्शित किया गया है, अक्ष के समांतर ही रहता है।
 
====फ्रैंसिस का अंत:प्रवाही टरबाइन====
इसकी खड़ी काट चित्र १४ में दिखाई गई है। इसका अभिकल्प जे० बी० फ्रैंसिस नामक सुविख्यात अमरीकन इंजीनियर ने बनाया था। इसमें फ चिह्नित टोंटियों में से पानी बाहर की ओर से त्रैज्य दिशा में प्रविष्ट होकर, भीतर की ओर केंद्र के निकट घूमनेवाले पंखों को ढकेलकर चलाता हुआ, नीचे को धुरी के चारों तरफ होता हुआ, बाहर निकल जाता है। इस चित्र के संकेताक्षर भी पूर्ववर्णित टरबाइन चित्र १२ और १३ के सदृश ही हैं।
 
==टरबाइनों के धावन चक्र (Runner)==
टरबाइनों का घूमनेवाला चक्र जिसकी परिधि पर डोलचियाँ अथवा पंख लगे होते हैं, धावक कहलाता है। टरबाइनों का यही प्रमुख अवयव है जिसकी उत्तम बनावट तथा संतुलन पर उनकी कार्यक्षमता तथा शक्ति निर्भर करती है। दो प्रकार को टरबाइनें प्राय: अधिक काम आती हैं, एक तो त्रैज्यअंत:प्रवाही प्रतिक्रियात्मक और दूसरी आवेगात्मक। प्रथम प्रकार में से फ्रैंसिस की टरबाइन का धावनचक्र चित्र १५ में दिखाया गया है, जो १०० से लेकर ५०० फुट तक के वर्चस्‌युक्त जल के उपयुक्त है। आवश्यकता पड़ने पर ६०० फुट वर्चस्‌ के जल का भी इनके साथ उपयोग किया जा सकता है।
 
आवेगात्मक टरबाइनों के लिये पेल्टन की दोहरी डोलचियों से युक्त धावनचक्र चित्र १६ में दिखाया गया है, जिसकी डोलचियों की आकृतियाँ दीर्घवृत्तजीय पृष्ठ (ellipsoidal surface) युक्त हैं तथा बाहरी किनारे थोड़े थोड़ कटे हुए हैं। इनमें पानी की प्रधार बिना झटका मारे इन्हें ढकेलकत बिलकुल साफ बाहर निकल जाती है और कटे किनारे के कारण चालू करते समय प्रधार की शक्ति विच्छिन्न नही होने पाती।
 
मिश्रप्रवाही टरबाइनों का धावनचक्र चित्र १७ में दिखाया गया है, जो फ्रैंसिस की टरबाइनों का ही परिष्कृत रूप है। इसका अभिकल्प अल्प वर्चस्‌ के जल से तीव्र गति तथा अधिक शक्ति प्राप्त करने के लिए किया गया है। यंत्रशास्त्र के नियमानुसार तीव्र गति के लिए धावनचक्र का व्यास कम करना पड़ता है, लेकिन ऐसा करने से उसकी शक्ति कम हो जाती है; अत: इस दोष को मिटाने के लिए इसका व्यास कम करके भी चौड़ाई बढ़ा दी गई है और पंखों की संख्या कम करके उन्हें केंद्र के निकट कर दिया गया है। इनका प्रयोग ५ से लेकर १५० फुट वर्चस्‌ तक के पानी के साथ किया जा सकता है।
 
श्


श्
====फ्रैंसिस का अंत:प्रवाही टर्बाइन====
इसकी खड़ी काट चित्र १४ में दिखाई गई है। इसका अभिकल्प जे० बी० फ्रैंसिस नामक सुविख्यात अमरीकन इंजीनियर ने बनाया था। इसमें फ चिह्नित टोंटियों में से पानी बाहर की ओर से त्रैज्य दिशा में प्रविष्ट होकर, भीतर की ओर केंद्र के निकट घूमनेवाले पंखों को ढकेलकर चलाता हुआ, नीचे को धुरी के चारों तरफ होता हुआ, बाहर निकल जाता है। इस चित्र के संकेताक्षर भी पूर्ववर्णित टर्बाइन चित्र १२ और १३ के सदृश ही हैं।


श्
==टर्बाइनों के धावन चक्र==
टर्बाइनों का घूमनेवाला चक्र (Runner) जिसकी परिधि पर डोलचियाँ अथवा पंख लगे होते हैं, धावक कहलाता है। टर्बाइनों का यही प्रमुख अवयव है जिसकी उत्तम बनावट तथा संतुलन पर उनकी कार्यक्षमता तथा शक्ति निर्भर करती है। दो प्रकार को टर्बाइनें प्राय: अधिक काम आती हैं, एक तो त्रैज्यअंत:प्रवाही प्रतिक्रियात्मक और दूसरी आवेगात्मक। प्रथम प्रकार में से फ्रैंसिस की टर्बाइन का धावनचक्र चित्र १५ में दिखाया गया है, जो १०० से लेकर ५०० फुट तक के वर्चस्‌युक्त जल के उपयुक्त है। आवश्यकता पड़ने पर ६०० फुट वर्चस्‌ के जल का भी इनके साथ उपयोग किया जा सकता है।
[[चित्र:Runner.jpg|thumb|center|टर्बाइनों के धावन चक्र]]
आवेगात्मक टर्बाइनों के लिये पेल्टन की दोहरी डोलचियों से युक्त धावनचक्र चित्र १६ में दिखाया गया है, जिसकी डोलचियों की आकृतियाँ दीर्घवृत्तजीय पृष्ठ (ellipsoidal surface) युक्त हैं तथा बाहरी किनारे थोड़े थोड़ कटे हुए हैं। इनमें पानी की प्रधार बिना झटका मारे इन्हें ढकेलकत बिलकुल साफ बाहर निकल जाती है और कटे किनारे के कारण चालू करते समय प्रधार की शक्ति विच्छिन्न नही होने पाती।
[[चित्र:Turbine 1.jpg|thumb|center|धावनचक्र]]
मिश्रप्रवाही टर्बाइनों का धावनचक्र चित्र १७ में दिखाया गया है, जो फ्रैंसिस की टर्बाइनों का ही परिष्कृत रूप है। इसका अभिकल्प अल्प वर्चस्‌ के जल से तीव्र गति तथा अधिक शक्ति प्राप्त करने के लिए किया गया है। यंत्रशास्त्र के नियमानुसार तीव्र गति के लिए धावनचक्र का व्यास कम करना पड़ता है, लेकिन ऐसा करने से उसकी शक्ति कम हो जाती है; अत: इस दोष को मिटाने के लिए इसका व्यास कम करके भी चौड़ाई बढ़ा दी गई है और पंखों की संख्या कम करके उन्हें केंद्र के निकट कर दिया गया है। इनका प्रयोग ५ से लेकर १५० फुट वर्चस्‌ तक के पानी के साथ किया जा सकता है।


चित्र २०.


धावनचक्रों की क्षमता - धावनचक्रों की क्षमता उनकी लाक्षणिक चाल (characteristic speed) द्वारा जाँची जाती है। यदि हम किसी धावनचक्र की विभिन्न नापों को इतना छोटा तथा संकुचित करते जायँ कि वह एक फुट वर्चस्‌ के जल से इतने चक्कर
धावनचक्रों की क्षमता - धावनचक्रों की क्षमता उनकी लाक्षणिक चाल (characteristic speed) द्वारा जाँची जाती है। यदि हम किसी धावनचक्र की विभिन्न नापों को इतना छोटा तथा संकुचित करते जायँ कि वह एक फुट वर्चस्‌ के जल से इतने चक्कर


श्
श्
श्


चित्र २१.


प्रति मिनट लगाने लगे कि उससे एक अश्वशक्ति मिल जाए तो चक्करों की उस संख्या को उस चक्र की लाक्षणिक चाल कहते हैं, जो निम्नलिखित सूत्र द्वारा व्यक्त की जाती है :
प्रति मिनट लगाने लगे कि उससे एक अश्वशक्ति मिल जाए तो चक्करों की उस संख्या को उस चक्र की लाक्षणिक चाल कहते हैं, जो निम्नलिखित सूत्र द्वारा व्यक्त की जाती है :


*इसमें ल (Ns)= लक्षणिक चाल, स (n) = धावन चक्र के चक्कर प्रति मिनट, अ. श. (H.P.) = अश्व शक्ति; व (H) = प्रभावी वर्चस्‌ फुटों में।
*इसमें ल (Ns)= लक्षणिक चाल, स (n) = धावन चक्र के चक्कर प्रति मिनट, अ. श. (H.P.) = अश्व शक्ति; व (H) = प्रभावी वर्चस्‌ फुटों में।
*विभिन्न टरबाइनों के लिये लाक्षणिक चालों की सीमा निम्न सारणी में दी गई है:
*विभिन्न टर्बाइनों के लिये लाक्षणिक चालों की सीमा निम्न सारणी में दी गई है:
#ल टरबाइनों के प्रकार
#ल टर्बाइनों के प्रकार
#१ से ५ आवेगात्मक टरबाइन - एक टोंटी युक्त
#१ से ५ आवेगात्मक टर्बाइन - एक टोंटी युक्त
#५ से १० आवेगात्मक टरबाइन - एक से अधिक टोंटी युक्त
#५ से १० आवेगात्मक टर्बाइन - एक से अधिक टोंटी युक्त
#१० से २० प्रतिक्रियात्मक टारबाइन - मंद चाल युक्त
#१० से २० प्रतिक्रियात्मक टारबाइन - मंद चाल युक्त
#२० से ५० प्रतिक्रियात्मक टारबाइन - मध्यम चाल युक्त
#२० से ५० प्रतिक्रियात्मक टारबाइन - मध्यम चाल युक्त
पंक्ति १९५: पंक्ति १८८:
व्यास इंचों में
व्यास इंचों में


इस सूत्र में ब (H) = वर्चस्‌ फुटों में; स (n) = धावनचक्र की चाल, चक्कर प्रति मिनट में। गुणांक ग (a) का मान उच्च वर्चसयुक्त टरबाइन के लिए ०.६, मध्यम वर्चस्युक्त टरबाइन के लिये ०.७ और अल्प वर्चस्‌युक्त टरबाइन के लिए ०.८ रखा जाता है।
इस सूत्र में ब (H) = वर्चस्‌ फुटों में; स (n) = धावनचक्र की चाल, चक्कर प्रति मिनट में। गुणांक ग (a) का मान उच्च वर्चसयुक्त टर्बाइन के लिए ०.६, मध्यम वर्चस्युक्त टर्बाइन के लिये ०.७ और अल्प वर्चस्‌युक्त टर्बाइन के लिए ०.८ रखा जाता है।
 
श्
 
श्
 
श्


चित्र २२.


====जलचलित मोटरों की बनावट====
====जलचलित मोटरों की बनावट====
पंक्ति २११: पंक्ति १९७:
पेल्टन के जिस आवेगचक्र का आरेख चित्र ९ में तथा जिसका धावन चक्र चित्र १६ में दिखाया गया है, उसके योग्य टोंटी की बनावट चित्र १८ में दिखाई गई है। इसमें लगे एक सूच्याकार वाल्व के स्पिंडल को चौकोर चूड़ियों के द्वारा हाथचकरी से आगे पीछे सरकाकर टोंटी का मुँह कम या ज्यादा खोलकर, पानी की प्रधार को नियंत्रित किया जाता है। इसका परिचालन नियंत्रक यंत्र द्वारा भी किया जा सकता है, जिसका वर्णन आगे किया जाएगा। पेल्टन के आवेगचक्र प्रयोगशाला के छोटे उपकरणों से लेकर १८,००० अश्वशक्ति उत्पादन योग्य कई मापों में बनाए जाते हैं।
पेल्टन के जिस आवेगचक्र का आरेख चित्र ९ में तथा जिसका धावन चक्र चित्र १६ में दिखाया गया है, उसके योग्य टोंटी की बनावट चित्र १८ में दिखाई गई है। इसमें लगे एक सूच्याकार वाल्व के स्पिंडल को चौकोर चूड़ियों के द्वारा हाथचकरी से आगे पीछे सरकाकर टोंटी का मुँह कम या ज्यादा खोलकर, पानी की प्रधार को नियंत्रित किया जाता है। इसका परिचालन नियंत्रक यंत्र द्वारा भी किया जा सकता है, जिसका वर्णन आगे किया जाएगा। पेल्टन के आवेगचक्र प्रयोगशाला के छोटे उपकरणों से लेकर १८,००० अश्वशक्ति उत्पादन योग्य कई मापों में बनाए जाते हैं।


====प्रतिक्रियात्मक टरबाइन====
====प्रतिक्रियात्मक टर्बाइन====
इसके धावनचक्र ढले लोहे की खोलों में फिट करके इनके पानी का मार्गदर्शन करने वाले गाइड इस प्रकार की चूलों (pivots) पर लगाए जाते हैं कि उनके तिरछेपन का समायोजन करके टरवाइन की चाल पर भी नियंत्रण
इसके धावनचक्र ढले लोहे की खोलों में फिट करके इनके पानी का मार्गदर्शन करने वाले गाइड इस प्रकार की चूलों (pivots) पर लगाए जाते हैं कि उनके तिरछेपन का समायोजन करके टरवाइन की चाल पर भी नियंत्रण


श्
श्
श्


चित्र २३.


रखा जा सकत है। इनसे धावनचक्र सुविधानुसार आड़े या खड़े दोनों ही प्रकार से यथेच्छा लगाए जा सकते हैं।
रखा जा सकत है। इनसे धावनचक्र सुविधानुसार आड़े या खड़े दोनों ही प्रकार से यथेच्छा लगाए जा सकते हैं।


====गतिनियंत्रक यंत्र (Governor)====
====गतिनियंत्रक यंत्र====
जलचालित मोटरों के लिये एक नियंत्रक यंत्र का आरेख चित्र १९ में दिखाया गया है, जो साधारण वाट के गवर्नर के नमूने पर दो गेंदों से युक्त है। इसे प्रधान चक्र के धुरे पर लगे एक फट्टे द्वारा चलाया जाता है। चक्र की गति तेज होने पर जब केंद्रापसारी बल के कारण गेंदें ऊपर उठती हैं तब उसका स्लीव (sleeve) वीवल गियरों के बीच लगे एक क्लच से संबंधित होकर, चित्र में बाएँ हाथ की तरफ लगे स्पिडल को घुमाकर, उसके सिरे पर लगे एक वर्म क्षरा वर्मकिर्रे को थोड़ा घुमाकर, एक दंतचक्र को थोड़ा सा घुमा देता है, जिससे संबंधित दंतयुक्त दंड (rack) भी सरक जाता है। इसी दंतदंड से संबंधित छेद युक्त एक वाल्व भी थोड़ा सरक कर पानी के मार्ग को आवश्यकतानुसार अवरुद्ध कर देता है। जल चक्र की गति मंद पड़ने पर इसकी क्रिया विपरीत प्रकार की होने से, इससे संबंधित वाल्व पानी के मार्ग, अथवा मुख्य वाल्व, को अधिक मात्रा में खोल देता है। इस प्रकार का बाल्व चित्र ७ में 'न' चिह्नित स्थान पर, चक्र के ऊपर पानी के मार्ग में, लगा हुआ दिखाया गया है।
जलचालित मोटरों के लिये एक नियंत्रक यंत्र का आरेख चित्र १९ में दिखाया गया है, जो साधारण वाट के गवर्नर के नमूने पर दो गेंदों से युक्त है। इसे प्रधान चक्र के धुरे पर लगे एक फट्टे द्वारा चलाया जाता है। चक्र की गति तेज होने पर जब केंद्रापसारी बल के कारण गेंदें ऊपर उठती हैं तब उसका स्लीव (sleeve) वीवल गियरों के बीच लगे एक क्लच से संबंधित होकर, चित्र में बाएँ हाथ की तरफ लगे स्पिडल को घुमाकर, उसके सिरे पर लगे एक वर्म क्षरा वर्मकिर्रे को थोड़ा घुमाकर, एक दंतचक्र को थोड़ा सा घुमा देता है, जिससे संबंधित दंतयुक्त दंड (rack) भी सरक जाता है। इसी दंतदंड से संबंधित छेद युक्त एक वाल्व भी थोड़ा सरक कर पानी के मार्ग को आवश्यकतानुसार अवरुद्ध कर देता है। जल चक्र की गति मंद पड़ने पर इसकी क्रिया विपरीत प्रकार की होने से, इससे संबंधित वाल्व पानी के मार्ग, अथवा मुख्य वाल्व, को अधिक मात्रा में खोल देता है। इस प्रकार का बाल्व चित्र ७ में 'न' चिह्नित स्थान पर, चक्र के ऊपर पानी के मार्ग में, लगा हुआ दिखाया गया है।


बड़े टरबाइनों के लिये तेल के दाब से काम करने वाला नियंत्रक यंत्र चित्र २० में दिखाया गया है। इस चित्र में ऊपर की तरफ, क चिह्नित डिब्बे में केंद्रापसारी प्रकार का भायुक्त गतियंत्रक लगा है। इसके नीचे ही पाइलट वाल्व ख है तो उपर्युक्त नियंत्रक द्वारा संचालित होकर अपने नीचे लगे ग बाल्व को जब खोल देता है, तब दाबयुक्त तेल सिलिडर घ में प्रवेश करके उसमें लगे पिस्टन तथा बाहर की तरफ उसमें जुड़े, कनेकिंटग राँड च को चलाकर पानी के प्रवेशमार्ग को आवश्यकतानुसार कम या ज्यादा खोल देता है। इस उपकरण में नीचे की तरफ एक परिभ्रामी पंप छ लगा है, जो तेल में आवश्यक दाब बनाए रखता है।
बड़े टर्बाइनों के लिये तेल के दाब से काम करने वाला नियंत्रक यंत्र चित्र २० में दिखाया गया है। इस चित्र में ऊपर की तरफ, क चिह्नित डिब्बे में केंद्रापसारी प्रकार का भायुक्त गतियंत्रक लगा है। इसके नीचे ही पाइलट वाल्व ख है तो उपर्युक्त नियंत्रक द्वारा संचालित होकर अपने नीचे लगे ग बाल्व को जब खोल देता है, तब दाबयुक्त तेल सिलिडर घ में प्रवेश करके उसमें लगे पिस्टन तथा बाहर की तरफ उसमें जुड़े, कनेकिंटग राँड च को चलाकर पानी के प्रवेशमार्ग को आवश्यकतानुसार कम या ज्यादा खोल देता है। इस उपकरण में नीचे की तरफ एक परिभ्रामी पंप छ लगा है, जो तेल में आवश्यक दाब बनाए रखता है।


====वर्चस्‌द्वार (Head Gate)====
====वर्चस्‌द्वार====
इसे खोलने तथा बंद करने की अनेक प्रकार की प्रयुक्तियाँ अभिकल्पित की गई हैं। ये द्वार बहुत ही दृढ़ बनाए जाते हैं, जिन्हें ऊपर नीचे सरकाने के लिये प्राय: दाँतेदार प्रयुक्तियों का ही प्रयोग किया जाता है, जो हाथ तथा शक्ति द्वारा दानों ही प्रकार से संचालित की जा सके। हाथ से चलाए जानेवाले एक द्वार का नमूना चित्र २१ में दिखाया गया है, जिसे चलाने वाले हैंडिल तथा किर्रे और रैक आदि स्पष्ट दिखाई दे रहे हैं।
वर्चस्‌द्वार (Head Gate) को खोलने तथा बंद करने की अनेक प्रकार की प्रयुक्तियाँ अभिकल्पित की गई हैं। ये द्वार बहुत ही दृढ़ बनाए जाते हैं, जिन्हें ऊपर नीचे सरकाने के लिये प्राय: दाँतेदार प्रयुक्तियों का ही प्रयोग किया जाता है, जो हाथ तथा शक्ति द्वारा दानों ही प्रकार से संचालित की जा सके। हाथ से चलाए जानेवाले एक द्वार का नमूना चित्र २१ में दिखाया गया है, जिसे चलाने वाले हैंडिल तथा किर्रे और रैक आदि स्पष्ट दिखाई दे रहे हैं।


====संयंत्रों का विन्यास (Plant Arrangement)====
====संयंत्रों का विन्यास====
चित्र २२, २३, २४, और २५ में नमूने के लिये चार प्रकार के विन्यास दिखाए गए हैं, जिनमें वर्चसद्वार, जलनालिकाएं (flumes), टरबाइन डायनेमी और भवन आदि दिखाए गए हैं। चित्र २२ में अन्य वर्चस्‌ के जल के साथ खड़ी टरबाइन और चित्र २५ में अल्प वर्चस्‌ जल के साथ आड़ी टरबाइन दिखाई गई है। चित्र २३ में उच्च वर्चस्‌ जल के साथ आड़ी टरवाइन और चित्र २४ में उच्च वर्चस्‌ जल के साथ खड़ी टरबाइन दिखाई गई है।
चित्र २२, २३, २४, और २५ में नमूने के लिये चार प्रकार के विन्यास दिखाए गए हैं, जिनमें वर्चसद्वार, जलनालिकाएं (flumes), टर्बाइन डायनेमी और भवन आदि दिखाए गए हैं। चित्र २२ में अन्य वर्चस्‌ के जल के साथ खड़ी टर्बाइन और चित्र २५ में अल्प वर्चस्‌ जल के साथ आड़ी टर्बाइन दिखाई गई है। चित्र २३ में उच्च वर्चस्‌ जल के साथ आड़ी टरवाइन और चित्र २४ में उच्च वर्चस्‌ जल के साथ खड़ी टर्बाइन दिखाई गई है।


==जल टरबाइनों की कार्यक्षमता==  
==जल टर्बाइनों की कार्यक्षमता==  
किसी भी जल टरबाइन की सैद्धांन्तिक अश्वशक्ति प्रति मिनट उसपर गिरनेवाले पानी के भार तथा जितनी ऊँचाई से वह गिरता है उसके गुणनफल के अनुपात से जानी जा सकती है। उदाहरणत: यदि स्लूस मार्ग द्वारा प्रति मिनट टरबाइन पर आनेवाले पानी का आयतन आ (V) घन फुट हो तो उस पानी का भार भ = अ ´ ६२.४ (W = V ´ 62.4) पाउंड होगा। यदि उस पानी का वर्चस्‌ ऊ(h) फुट हो तो उसकी सैद्धांतिक अश्वशक्ति होगी।
किसी भी जल टर्बाइन की सैद्धांन्तिक अश्वशक्ति प्रति मिनट उसपर गिरनेवाले पानी के भार तथा जितनी ऊँचाई से वह गिरता है उसके गुणनफल के अनुपात से जानी जा सकती है। उदाहरणत: यदि स्लूस मार्ग द्वारा प्रति मिनट टर्बाइन पर आनेवाले पानी का आयतन आ (V) घन फुट हो तो उस पानी का भार भ = अ ´ ६२.४ (W = V ´ 62.4) पाउंड होगा। यदि उस पानी का वर्चस्‌ ऊ(h) फुट हो तो उसकी सैद्धांतिक अश्वशक्ति होगी।
[[चित्र:Plant Arrangement.jpg|thumb|center|संयंत्रों का विन्यास]]
लेकिन किसी चालक यंत्र की कार्यक्षमता उसकी सैद्धांतिक अश्वशक्ति, और वास्तविक प्रदत्त अश्वशक्ति का अनुपात समझी जाती है। प्रदत्त अश्वशक्ति को रोधन या ब्रेक अश्वाशक्ति (brake horse power, B.H.P.) भी कहते हैं; अत: किसी जल टर्बाइन की कार्यक्षमता


लेकिन किसी चालक यंत्र की कार्यक्षमता उसकी सैद्धांतिक अश्वशक्ति, और वास्तविक प्रदत्त अश्वशक्ति का अनुपात समझी जाती है। प्रदत्त अश्वशक्ति को रोधन या ब्रेक अश्वाशक्ति (brake horse power, B.H.P.) भी कहते हैं; अत: किसी जल टरबाइन की कार्यक्षमता
यदि किसी जल टर्बाइन की कार्यक्षमता ८० प्रति शत मान ली जाए तो उसकी रोधक (ब्रेक) अश्वशक्ति।


यदि किसी जल टरबाइन की कार्यक्षमता ८० प्रति शत मान ली जाए तो उसकी रोधक (ब्रेक) अश्वशक्ति।


<s>सं. ग्रं. - वाटर ह्वील ऐंड टरबाइन मशीनरी, खंड ६, मशीनरी पब्लिशिंग कं. लि., लंदन, ऐंड्र ू जैमिसन : हाइड्रॉलिक्स; प्रो. उब्लू. जे लिमहैम: मिकैनिकल इंजीनियरिंग। (ओं. ना. श.)</s>
==भाप टर्बाइन==


==भाप टरबाइन==
'''भाप टर्बाइन''' (Steam Turbine) एक मूलचालक (prime mover) है, जिसमें भाप की उष्मा-ऊर्जा को गतिज उर्जा में परिवर्तित कर, उच्च गतिशील भाप को एक घूर्णक (rotor) पर बँधे हुए बहुत से फलकों पर टकराया जाता है, जिससे फलक परिभ्रमण करते हैं एवं इससे कार्य होता है। अन्योन्यगतिक (reciprocating) भाप इंजन में भाप की स्थैतिक (statical) दाब द्वारा पिस्टन पर कार्य किया जाता है। यद्यपि इंजन में भाप पिस्टन के साथ चलती है, फिर भी इंजन की क्रिया में भाप की गतिज उर्जा का प्रभाव नगणय है। भाप टर्बाइन में भाप इंजन की अपेक्षा उच्चतर गति मिल सकती है और गतिसीमा भी बड़ी हा सकती है। टर्बाइन के पुर्जों का संतुलन अच्छा रहता है। भाप की समान मात्रा एवं समान अवस्था में भाप टर्बाइन भाप इंजन से अधिक शक्ति पैदा कर सकता है। भाप इंजन से कुछ वर्ष काम लेने के बाद भाप की खपत बढ़ जाती है, परंतु टर्बाइन में ऐसी अवस्था नहीं आती पृथ्वी पर के सभी मूल चालकों में भाप टर्बाइन सबसे अधिक टिकाऊ होता है। टर्बाइन से सबसे बड़ा लाभ यह होता है कि इससे घूर्णक गति सीधे प्राप्त होती है, जबकि भाप इंजन में अन्योन्यगति से घूर्णक गति प्राप्त करने के लिए अलग से उपादान का व्यवहर करना पड़ता है।


'''भाप टरबाइन''' (Steam Turbine) एक मूलचालक (prime mover) है, जिसमें भाप की उष्मा-ऊर्जा को गतिज उर्जा में परिवर्तित कर, उच्च गतिशील भाप को एक घूर्णक (rotor) पर बँधे हुए बहुत से फलकों पर टकराया जाता है, जिससे फलक परिभ्रमण करते हैं एवं इससे कार्य होता है। अन्योन्यगतिक (reciprocating) भाप इंजन में भाप की स्थैतिक (statical) दाब द्वारा पिस्टन पर कार्य किया जाता है। यद्यपि इंजन में भाप पिस्टन के साथ चलती है, फिर भी इंजन की क्रिया में भाप की गतिज उर्जा का प्रभाव नगणय है। भाप टरबाइन में भाप इंजन की अपेक्षा उच्चतर गति मिल सकती है और गतिसीमा भी बड़ी हा सकती है। टरबाइन के पुर्जों का संतुलन अच्छा रहता है। भाप की समान मात्रा एवं समान अवस्था में भाप टरबाइन भाप इंजन से अधिक शक्ति पैदा कर सकता है। भाप इंजन से कुछ वर्ष काम लेने के बाद भाप की खपत बढ़ जाती है, परंतु टरबाइन में ऐसी अवस्था नहीं आती पृथ्वी पर के सभी मूल चालकों में भाप टरबाइन सबसे अधिक टिकाऊ होता है। टरबाइन से सबसे बड़ा लाभ यह होता है कि इससे घूर्णक गति सीधे प्राप्त होती है, जबकि भाप इंजन में अन्योन्यगति से घूर्णक गति प्राप्त करने के लिए अलग से उपादान का व्यवहर करना पड़ता है।
वाष्पित्र में भाप का जनन उच्च दाब एवं अधिताप (superheat temperature) पर होता है। जब यह भाप टर्बाइन के पास पहुँचती है, उस समय इसमें अधिक मात्रा में उष्मा ऊर्जा होती है और इसकी दाब भी इतनी अधिक होती है कि यह निम्नदाब तक प्रसारित हो सकती है। परंतु उस समय इसकी गतिज उर्जा नगण्य होती है। अत: भाप कुछ कार्य कर सके इसके पहले इसकी उष्मा ऊर्जा को गतिज उर्जा में परिवर्तित किया जाता है। यह परिवर्तन, अच्छी तरह अभिकल्पित उपकरण में, भाप को विस्तारित करने से होता है। भाप का प्रसार या तो एक ही क्रिया में पूर्ण किया जाता है, या विभिन्न क्रियाओं में। इसका अर्थ यह होता है कि उष्मा ऊर्जा को गतिज ऊर्जा में परिवर्तित करने के लिए बहुत से स्थिर उपकरण व्यवहार में लाए जाते हैं और प्राय: दो स्थिर उपकरणों के बीच एक गतिमान उपकरण लगा रहता है। स्थिर उपकरण में प्राप्त गतिज ऊर्जा को उसके बाद बँधे हुए गतिमान उपकरण के ऊपर कार्य करने के लिये लगाया जाता है।
 
वाष्पित्र में भाप का जनन उच्च दाब एवं अधिताप (superheat temperature) पर होता है। जब यह भाप टरबाइन के पास पहुँचती है, उस समय इसमें अधिक मात्रा में उष्मा ऊर्जा होती है और इसकी दाब भी इतनी अधिक होती है कि यह निम्नदाब तक प्रसारित हो सकती है। परंतु उस समय इसकी गतिज उर्जा नगण्य होती है। अत: भाप कुछ कार्य कर सके इसके पहले इसकी उष्मा ऊर्जा को गतिज उर्जा में परिवर्तित किया जाता है। यह परिवर्तन, अच्छी तरह अभिकल्पित उपकरण में, भाप को विस्तारित करने से होता है। भाप का प्रसार या तो एक ही क्रिया में पूर्ण किया जाता है, या विभिन्न क्रियाओं में। इसका अर्थ यह होता है कि उष्मा ऊर्जा को गतिज ऊर्जा में परिवर्तित करने के लिए बहुत से स्थिर उपकरण व्यवहार में लाए जाते हैं और प्राय: दो स्थिर उपकरणों के बीच एक गतिमान उपकरण लगा रहता है। स्थिर उपकरण में प्राप्त गतिज ऊर्जा को उसके बाद बँधे हुए गतिमान उपकरण के ऊपर कार्य करने के लिये लगाया जाता है।
==संक्षिप्त इतिहास==
==संक्षिप्त इतिहास==
विश्व का सर्वप्रथम घूर्णन इंजन सन्‌ ५० ई. में ऐलेक्जैंड्रिया के हीरो ने बनाया था। इसमें दो कीलकों (pivots) के बीच एक खोखली गेंद लगी थी। टरबाइन के निचले भाग में भाप बनाने के लिए बरतन रखा हुआ था, जिससे भाप उस गेंद में प्रवेश कर सकती थी। वहाँ से भाप गेंद में लगी हुई दो त्रैज्य (radial) नलिकाओं द्वारा बाहर आती थी इसी के कारण गेंद घूमती रहती थी। यह टरबाइन बहुत ही साधारण था। हीरो के टरबाइन के आधार पर बहुत से वैज्ञानिकों ने इसके विकास के लिए अन्वेषण किए। तब से विभिन्न अभिकल्प के टरबाइन बनाए गए, किंतु वे सभी नमूने के रूप में ही रहे। उन टरबाइनों को व्यवहार में लाना लाभदायक नहीं समझा गया। सर्वप्रथम सफल टरबाइन गियोवन्नी ्व्राांका ने १६२९ ई. में बनाया था। यह पहला आवेग टरबाइन था।
विश्व का सर्वप्रथम घूर्णन इंजन सन्‌ ५० ई. में ऐलेक्जैंड्रिया के हीरो ने बनाया था। इसमें दो कीलकों (pivots) के बीच एक खोखली गेंद लगी थी। टर्बाइन के निचले भाग में भाप बनाने के लिए बरतन रखा हुआ था, जिससे भाप उस गेंद में प्रवेश कर सकती थी। वहाँ से भाप गेंद में लगी हुई दो त्रैज्य (radial) नलिकाओं द्वारा बाहर आती थी इसी के कारण गेंद घूमती रहती थी। यह टर्बाइन बहुत ही साधारण था। हीरो के टर्बाइन के आधार पर बहुत से वैज्ञानिकों ने इसके विकास के लिए अन्वेषण किए। तब से विभिन्न अभिकल्प के टर्बाइन बनाए गए, किंतु वे सभी नमूने के रूप में ही रहे। उन टर्बाइनों को व्यवहार में लाना लाभदायक नहीं समझा गया। सर्वप्रथम सफल टर्बाइन गियोवन्नी ्व्राांका ने १६२९ ई. में बनाया था। यह पहला आवेग टर्बाइन था।
==प्रकार==
==प्रकार==
टरबाइन के प्रकार - भाप टरबाइन मुख्यत: दो प्रकार के होते हैं:
टर्बाइन के प्रकार - भाप टर्बाइन मुख्यत: दो प्रकार के होते हैं:
====आवेग (impulse) टरबाइन====  
====आवेग टर्बाइन====  
इस टरबाइन में सिर्फ तुंड (nozzle) में भाप प्रसारित होती है। गतिमान फलकों से होकर गुजरने में भाप की दाब में कुछ भी परिवर्तन नहीं होता, अर्थात्‌ फलकों के प्रवेश और निकास सिरे पर भाप की दाब समान ही रहती है। भाप, गतिमान फलकों की कई पंक्तियों से होकर, प्रवाहित होती है और इस प्रवाह में गतिज ऊर्जा का परिवर्तन उपयोगी कार्य के रूप में होता है। इस तरह के टरबाइनों में प्रथम सफल टरबाइन डी लाबाल (De laval) का टरबाइन था यह एक आवेगचक्र है, जिसके ऊपर परिधि पर लगे हुए तुंडों से भाप निकलकर टकराती है। भाप तुंड में पूर्णत: विस्तारित होती है। ये तुंड चक्र की स्पर्शरेखा से १५० से २०० तक के कोण पर झुके रहते हैं। सबसे छोटा डी लावाल टरबाइन ५ इंच व्यासवाले चक्र का बनाया गया था और यह ३०,००० परिक्रमण प्रति मिनट पर चलाया गया था। यह निम्न दाब भाप के लिए उपयुक्त है। इस तरह के टरबाइन के फलकों के प्रवेश एवं निकास कोण समान होते हैं।
आवेग (impulse) टर्बाइन में सिर्फ तुंड (nozzle) में भाप प्रसारित होती है। गतिमान फलकों से होकर गुजरने में भाप की दाब में कुछ भी परिवर्तन नहीं होता, अर्थात्‌ फलकों के प्रवेश और निकास सिरे पर भाप की दाब समान ही रहती है। भाप, गतिमान फलकों की कई पंक्तियों से होकर, प्रवाहित होती है और इस प्रवाह में गतिज ऊर्जा का परिवर्तन उपयोगी कार्य के रूप में होता है। इस तरह के टर्बाइनों में प्रथम सफल टर्बाइन डी लाबाल (De laval) का टर्बाइन था यह एक आवेगचक्र है, जिसके ऊपर परिधि पर लगे हुए तुंडों से भाप निकलकर टकराती है। भाप तुंड में पूर्णत: विस्तारित होती है। ये तुंड चक्र की स्पर्शरेखा से १५० से २०० तक के कोण पर झुके रहते हैं। सबसे छोटा डी लावाल टर्बाइन ५ इंच व्यासवाले चक्र का बनाया गया था और यह ३०,००० परिक्रमण प्रति मिनट पर चलाया गया था। यह निम्न दाब भाप के लिए उपयुक्त है। इस तरह के टर्बाइन के फलकों के प्रवेश एवं निकास कोण समान होते हैं।
====आवेग प्रतिक्रया टरबाइन (Impulse-Reaction Turbine)====
====आवेग प्रतिक्रया टर्बाइन====
इस प्रकार के टरबाइन में भाप का पूर्ण रूप से प्रसार एक क्रिया में नहीं होता। प्रथम स्थिर पंक्ति से निकलकर भाप गतिमान फलक पर टकराती है। जैसे जैसे भाप फलकों से होकर प्रवाहित होती है, वैसे वैसे इसका प्रसार होता जाता है। अत: इस तरह के टरबाइन में फलक तुंड का भी काम करता है। गतिमान फलकों द्वारा भाप के प्रसारित किए जाने पर भाप की गतिज उर्जा में कुछ वृद्धि हो जाती है। इस तरह इसके फलक कार्य करने के साथ ही साथ भाप का प्रसार भी करते हैं। इन फलकों को साथ ही साथ प्रेरित एवं प्रतिक्रिया बलों का सामना करना पड़ता है। इसी लिए इस तरह के टरबाइन को 'आवेग प्रतिक्रया टरबाइन' कहते हैं। वस्तुत: यह नामकरण अशुद्ध है, क्योंकि केवल शुद्ध प्रतिक्रिया टरबाइन नाम का कोई भी टरबाइन नहीं होता। इस तरह के टरबाइन के दो मुख्य उदाहरण हैं:-
आवेग प्रतिक्रया टर्बाइन (Impulse-Reaction Turbine) में भाप का पूर्ण रूप से प्रसार एक क्रिया में नहीं होता। प्रथम स्थिर पंक्ति से निकलकर भाप गतिमान फलक पर टकराती है। जैसे जैसे भाप फलकों से होकर प्रवाहित होती है, वैसे वैसे इसका प्रसार होता जाता है। अत: इस तरह के टर्बाइन में फलक तुंड का भी काम करता है। गतिमान फलकों द्वारा भाप के प्रसारित किए जाने पर भाप की गतिज उर्जा में कुछ वृद्धि हो जाती है। इस तरह इसके फलक कार्य करने के साथ ही साथ भाप का प्रसार भी करते हैं। इन फलकों को साथ ही साथ प्रेरित एवं प्रतिक्रिया बलों का सामना करना पड़ता है। इसी लिए इस तरह के टर्बाइन को 'आवेग प्रतिक्रया टर्बाइन' कहते हैं। वस्तुत: यह नामकरण अशुद्ध है, क्योंकि केवल शुद्ध प्रतिक्रिया टर्बाइन नाम का कोई भी टर्बाइन नहीं होता। इस तरह के टर्बाइन के दो मुख्य उदाहरण हैं:-
;पारसन का टरबाइन -  
;पारसन का टर्बाइन -  
१८८४ ई. में पारसन ने प्रथम आवेग प्रतिक्रया टरबाइन बनाया था। इसमें भाप, टरबाइन चक्र के अक्ष के समानांतर दिशा में फलकों से होकर, प्रवाहित होती है। इस तरह के टरबाइन को अक्षप्रवाह टरबाइन (Axial Flow Turbine) भी कहते हैं। पारसन टरबाइन में स्थित और गतिमान फलक सर्वसम बनाए जाते हैं।
१८८४ ई. में पारसन ने प्रथम आवेग प्रतिक्रया टर्बाइन बनाया था। इसमें भाप, टर्बाइन चक्र के अक्ष के समानांतर दिशा में फलकों से होकर, प्रवाहित होती है। इस तरह के टर्बाइन को अक्षप्रवाह टर्बाइन (Axial Flow Turbine) भी कहते हैं। पारसन टर्बाइन में स्थित और गतिमान फलक सर्वसम बनाए जाते हैं।


;लजुंग्सट्रोम (Ljungstrom)टरबाइन -  
;लजुंग्सट्रोम (Ljungstrom)टर्बाइन -  
इस टरबाइन में फलक त्रैज्य दिशा में लगे रहते हैं, जिससे भाप चक्र के अक्ष के निकट फलक के सिरे पर प्रवेश करती है और परिधि की ओर प्रवाहित होती है। इसके कारण इस टरबाइन में प्रवाह त्रैज्य होता है। इसके सिवाय इसमें एक महत्वपूर्ण अंतर यह है कि दोनों तरह के फलक विपरीत दिशाओं में चलते हैं, जिससे उच्च आपेक्षिक वेग प्राप्त होता है।
इस टर्बाइन में फलक त्रैज्य दिशा में लगे रहते हैं, जिससे भाप चक्र के अक्ष के निकट फलक के सिरे पर प्रवेश करती है और परिधि की ओर प्रवाहित होती है। इसके कारण इस टर्बाइन में प्रवाह त्रैज्य होता है। इसके सिवाय इसमें एक महत्वपूर्ण अंतर यह है कि दोनों तरह के फलक विपरीत दिशाओं में चलते हैं, जिससे उच्च आपेक्षिक वेग प्राप्त होता है।


====भाप टरबाइन के यांत्रिक लक्षण====
====भाप टर्बाइन के यांत्रिक लक्षण====
साधारणत: भाप टरबाइन में अग्रलिखित पुर्जे लगे रहते हैं: (१) टोंटी, जिसमें भाप उच्च दाब से निम्न दाब पर प्रसारित होकर उच्च गति प्राप्त करती है; (२) गतिमान फलक, जिसके ऊपर टोंटी या स्थिर फलक से निकली हुई भाप टकराती है एवं इससे कार्य होता है; (३) स्थिर फलक, जो भाप का निकास किसी खास कोण पर करके अगले गतिमान फलक की और भेजता है; (४) घूर्णक, जिसके ऊपर गतिमान फलकों की पंक्तियाँ ब्धाीं रहती हैं। घूर्णक को फलकों के ऊपर एवं स्वयं अपने ऊपर पड़नेवाले अपकेंद्रित वालों का सामना करना पड़ता है; (५) नम्य ईषा
साधारणत: भाप टर्बाइन में अग्रलिखित पुर्जे लगे रहते हैं: (१) टोंटी, जिसमें भाप उच्च दाब से निम्न दाब पर प्रसारित होकर उच्च गति प्राप्त करती है; (२) गतिमान फलक, जिसके ऊपर टोंटी या स्थिर फलक से निकली हुई भाप टकराती है एवं इससे कार्य होता है; (३) स्थिर फलक, जो भाप का निकास किसी खास कोण पर करके अगले गतिमान फलक की और भेजता है; (४) घूर्णक, जिसके ऊपर गतिमान फलकों की पंक्तियाँ ब्धाीं रहती हैं। घूर्णक को फलकों के ऊपर एवं स्वयं अपने ऊपर पड़नेवाले अपकेंद्रित वालों का सामना करना पड़ता है; (५) नम्य ईषा


श्
श्
पंक्ति २७०: पंक्ति २४९:
१. टोंटी, २, ४ और ६. गतिमान फलक; ३, ५ और १०. स्थिर फलक; ७. ईषा; ८. चक्र; ९. वाष्पित्र में प्रवेश क. भाप पेटी दाब; ख. प्रवेश भाप गति; ग. निकास भाप गति तथा घ. संघनक दाब।
१. टोंटी, २, ४ और ६. गतिमान फलक; ३, ५ और १०. स्थिर फलक; ७. ईषा; ८. चक्र; ९. वाष्पित्र में प्रवेश क. भाप पेटी दाब; ख. प्रवेश भाप गति; ग. निकास भाप गति तथा घ. संघनक दाब।


(flexible shaft) जो घूर्णक को सहारा देती है और टरबाइन में उत्पन्न शक्ति को संचारित करती है; (६) बेयरिंग (bearing), जो ईषा को सहारा देता है; (७) गियर, (gear) जो घूर्णक की उच्चगति को व्यवहार में लाने लायक गति में परिवर्तित करता है, (८) आवरण (casing), जिसके ऊपर स्थिर फलकों की पंक्तियाँ बँधी रहती हैं। गतिमान फलकों सहित परिभ्रमक को यह ढके रहता है, जिसस भाप बीच में ही बाहर न निकल जाय।
(flexible shaft) जो घूर्णक को सहारा देती है और टर्बाइन में उत्पन्न शक्ति को संचारित करती है; (६) बेयरिंग (bearing), जो ईषा को सहारा देता है; (७) गियर, (gear) जो घूर्णक की उच्चगति को व्यवहार में लाने लायक गति में परिवर्तित करता है, (८) आवरण (casing), जिसके ऊपर स्थिर फलकों की पंक्तियाँ बँधी रहती हैं। गतिमान फलकों सहित परिभ्रमक को यह ढके रहता है, जिसस भाप बीच में ही बाहर न निकल जाय।


====टरबाइन फलक====
====टर्बाइन फलक====
भाप टरबाइन में सबसे मुख्य इसके फलक हैं। इस यंत्र के अन्य पुर्जे इन्हीं फलकों के उपयोग के लिए रहते हैं। बिना फलक के शक्ति प्राप्त नहीं हो सकती एवं फलकों में जरा सा भी दोष रहने से टरबाइन की दक्षता में कमी आ जाती है। इसके निर्माण के लिए ऐसे द्रव्यों की आवश्यकता होती है जो उच्चताप के साथ ही उच्च प्रतिबल का भी सामना कर सकें। आधुनिक उच्च ताप और उच्च प्रतिबलवाले टरबाइनों के फलकों के लिये अलौह वर्ग के द्रव्यों का व्यवहार नहीं किया जा सकता, क्योंकि ताप के साथ इनकी तनाव क्षमता में भी कमी आ जाती है। आजकल इसके लिये अविकारी इस्पात के विकास की ओर वैज्ञानिकों का ध्यान केंद्रित है। आदर्श फलक वही है जो उच्चतम दक्षता का होते हुए एक समान प्रतिबलित (stressed) हो। इस तरह की अवस्था खोखले फलकों द्वारा प्राप्त की जा सकती है। इसके सिवाय खोखले फलक परिभ्रमक पर तीव्र प्रतिबल नहीं डालते। इससे उच्च गति की प्राप्ति होती है, तथा अधिक शक्ति की प्राप्ति हो सकती है। टरबाइन में प्रवण फलकों का भी व्यवहार किया जाता है, जिससे इसके ऊपर कम प्रतिबल पड़े।
भाप टर्बाइन में सबसे मुख्य इसके फलक हैं। इस यंत्र के अन्य पुर्जे इन्हीं फलकों के उपयोग के लिए रहते हैं। बिना फलक के शक्ति प्राप्त नहीं हो सकती एवं फलकों में जरा सा भी दोष रहने से टर्बाइन की दक्षता में कमी आ जाती है। इसके निर्माण के लिए ऐसे द्रव्यों की आवश्यकता होती है जो उच्चताप के साथ ही उच्च प्रतिबल का भी सामना कर सकें। आधुनिक उच्च ताप और उच्च प्रतिबलवाले टर्बाइनों के फलकों के लिये अलौह वर्ग के द्रव्यों का व्यवहार नहीं किया जा सकता, क्योंकि ताप के साथ इनकी तनाव क्षमता में भी कमी आ जाती है। आजकल इसके लिये अविकारी इस्पात के विकास की ओर वैज्ञानिकों का ध्यान केंद्रित है। आदर्श फलक वही है जो उच्चतम दक्षता का होते हुए एक समान प्रतिबलित (stressed) हो। इस तरह की अवस्था खोखले फलकों द्वारा प्राप्त की जा सकती है। इसके सिवाय खोखले फलक परिभ्रमक पर तीव्र प्रतिबल नहीं डालते। इससे उच्च गति की प्राप्ति होती है, तथा अधिक शक्ति की प्राप्ति हो सकती है। टर्बाइन में प्रवण फलकों का भी व्यवहार किया जाता है, जिससे इसके ऊपर कम प्रतिबल पड़े।


====परिभ्रमक====
====परिभ्रमक====
;गति को कम करने के तरीके -  
;गति को कम करने के तरीके -  
सभी भाप टरबाइनों में फलकगति भापगति की अनुपाती होती है। यदि भाप को वाष्पित्र दाब से संघनक दाब तक एक ही चरण में प्रसारित किया जाय, तो प्रसार के अंत में भापगति अत्यधिक हो जाएगी। यदि इस उच्च गति भाप का एक फलकपंक्ति में व्यवहार किया जाय, तो इससे परिभ्रमक गति अत्यधिक (उदाहरणत : ३०,००० परिक्रमा प्रति मिनट) मिलेगी, जो व्यावहारिक कार्यों के लिए अत्यंत अधिक है। परिभ्रमक की इस उच्च गति को कम करने के लिए बहुत सी प्रणालियाँ खोजी गर्ह हैं। इन सभी प्रणालियों में कई फलकपंक्तियों का उपयोग किया जाता है। इसके लिए एक ही ईषा पर बहुत से परिभ्रमक एक क्रम चाभी की सहायता से बँधे रहते हैं। जैसे जैसे गतिमान्‌ फलकपंक्तियों द्वारा भाप प्रवाहित होती है, भापदाब (या भापगति) उन चरणों में अवशोषित हो जाती है। इस क्रिया को 'संयोजन' (compounding) कहते हैं। परिभ्रमक गति को कम करने के मुख्य तरीके ये हैं:
सभी भाप टर्बाइनों में फलकगति भापगति की अनुपाती होती है। यदि भाप को वाष्पित्र दाब से संघनक दाब तक एक ही चरण में प्रसारित किया जाय, तो प्रसार के अंत में भापगति अत्यधिक हो जाएगी। यदि इस उच्च गति भाप का एक फलकपंक्ति में व्यवहार किया जाय, तो इससे परिभ्रमक गति अत्यधिक (उदाहरणत : ३०,००० परिक्रमा प्रति मिनट) मिलेगी, जो व्यावहारिक कार्यों के लिए अत्यंत अधिक है। परिभ्रमक की इस उच्च गति को कम करने के लिए बहुत सी प्रणालियाँ खोजी गर्ह हैं। इन सभी प्रणालियों में कई फलकपंक्तियों का उपयोग किया जाता है। इसके लिए एक ही ईषा पर बहुत से परिभ्रमक एक क्रम चाभी की सहायता से बँधे रहते हैं। जैसे जैसे गतिमान्‌ फलकपंक्तियों द्वारा भाप प्रवाहित होती है, भापदाब (या भापगति) उन चरणों में अवशोषित हो जाती है। इस क्रिया को 'संयोजन' (compounding) कहते हैं। परिभ्रमक गति को कम करने के मुख्य तरीके ये हैं:


;वेगसंयोजन -  
;वेगसंयोजन -  
स्थिर फलकों की पंक्तियों द्वारा पृथक की हुई, गतिमान फलकों की पंक्तियाँ टरबाइन ईष पर बँधी रहती हैं। भाप, वाष्पित्र दाब से संघनक दाब तक टोंटी में प्रसारित होकर, उच्च गति प्राप्त करती है। इसके बाद उच्च-गति-भाप गतिमान फलकों की प्रथम पंक्ति द्वारा प्रवाहित होती है, जिसमें इसकी गति का कुछ भाग अवशोषित होता है और बाकी स्थिर फलकों की अगली पंक्ति में प्रवेश करता है। ये स्थिर फलक गति को बिना परिवर्तित किए भाप की दिशा को बदल देते हैं। तब भाप गतिमान्‌ फलक की दूसरी पंक्ति में प्रवेश करती है। भाप की गति का कुछ और भाग इस दूसरी गतिमान्‌ पंक्ति में अवशोषित होता है। ज्यों ज्यों भाप आगे की फलकपंक्तियों द्वारा प्रवाहित होती है, इस क्रम की पुनरावृत्ति होती रहती है। इस तरह अंत में भाप की संपूर्ण गतिज उर्जा अवशोषित हो जाती है (देखें चित्र २६)।
स्थिर फलकों की पंक्तियों द्वारा पृथक की हुई, गतिमान फलकों की पंक्तियाँ टर्बाइन ईष पर बँधी रहती हैं। भाप, वाष्पित्र दाब से संघनक दाब तक टोंटी में प्रसारित होकर, उच्च गति प्राप्त करती है। इसके बाद उच्च-गति-भाप गतिमान फलकों की प्रथम पंक्ति द्वारा प्रवाहित होती है, जिसमें इसकी गति का कुछ भाग अवशोषित होता है और बाकी स्थिर फलकों की अगली पंक्ति में प्रवेश करता है। ये स्थिर फलक गति को बिना परिवर्तित किए भाप की दिशा को बदल देते हैं। तब भाप गतिमान्‌ फलक की दूसरी पंक्ति में प्रवेश करती है। भाप की गति का कुछ और भाग इस दूसरी गतिमान्‌ पंक्ति में अवशोषित होता है। ज्यों ज्यों भाप आगे की फलकपंक्तियों द्वारा प्रवाहित होती है, इस क्रम की पुनरावृत्ति होती रहती है। इस तरह अंत में भाप की संपूर्ण गतिज उर्जा अवशोषित हो जाती है (देखें चित्र २६)।
;दाबसंयोजन -
;दाबसंयोजन -
इसमें गतिमान्‌ फलकों की पंक्तियाँ, जिनमें प्रत्येक के बाद स्थिर टोंटी की एक पंक्ति होती है, क्रम में टरबाइन ईषा पर चाभी द्वारा लगी रहती है। इसमें भाप का पूर्ण दाबपात (pressure drop) केबल टोंटी की प्रथम पंक्ति में ही नहीं होता, बल्कि टोंटी की सभी पंक्तियों में समान रूप से बँटा रहता है। वाष्पित्र से भाप टोंटी की प्रथम पंक्ति में प्रवेश करती है, जिसमें यह अंशत: प्रसारित होती है। तत्पश्चात्‌ यह प्रथम गतिमान्‌ फलकपंक्ति द्वारा प्रवाहित होती है, जहाँ इसकी प्राय: संपूर्ण गतिज ऊर्जा अवशोषित हो जाती है। इस पंक्ति से निकलकर यह टोंटी की दूसरी पंक्ति में प्रवेश करती है, जहाँ यह पुन: अंशत: प्रसारित होती है। इससे दाब में फिर कुछ कमी हो जाती है। टोटी की दूसरी पंक्ति द्वारा प्राप्त गतिज ऊर्जा अगली
इसमें गतिमान्‌ फलकों की पंक्तियाँ, जिनमें प्रत्येक के बाद स्थिर टोंटी की एक पंक्ति होती है, क्रम में टर्बाइन ईषा पर चाभी द्वारा लगी रहती है। इसमें भाप का पूर्ण दाबपात (pressure drop) केबल टोंटी की प्रथम पंक्ति में ही नहीं होता, बल्कि टोंटी की सभी पंक्तियों में समान रूप से बँटा रहता है। वाष्पित्र से भाप टोंटी की प्रथम पंक्ति में प्रवेश करती है, जिसमें यह अंशत: प्रसारित होती है। तत्पश्चात्‌ यह प्रथम गतिमान्‌ फलकपंक्ति द्वारा प्रवाहित होती है, जहाँ इसकी प्राय: संपूर्ण गतिज ऊर्जा अवशोषित हो जाती है। इस पंक्ति से निकलकर यह टोंटी की दूसरी पंक्ति में प्रवेश करती है, जहाँ यह पुन: अंशत: प्रसारित होती है। इससे दाब में फिर कुछ कमी हो जाती है। टोटी की दूसरी पंक्ति द्वारा प्राप्त गतिज ऊर्जा अगली


श्
श्
पंक्ति २९४: पंक्ति २७३:
१. भाप का वाष्पित्र में प्रवेश; २. निष्कासन, ३. अनुपट (diaphragm); ४. चक्र; ५. ईषा; ६. टोंटी; ७. और ९. गतिमान फलक तथा ८. स्थिर फलक। क. भाप पेटी दाब; ख. प्रवेश भाप गति; ग. निकाश भाप गति तथा घ. संघनक दाब
१. भाप का वाष्पित्र में प्रवेश; २. निष्कासन, ३. अनुपट (diaphragm); ४. चक्र; ५. ईषा; ६. टोंटी; ७. और ९. गतिमान फलक तथा ८. स्थिर फलक। क. भाप पेटी दाब; ख. प्रवेश भाप गति; ग. निकाश भाप गति तथा घ. संघनक दाब


गतिमान फलकपंक्ति में अवशोषित होती है। यह क्रिया तब तक चलती रहती है, जब तक संपूर्ण दाबपात टरबाइन में अवशोषित न हो जाए। दाब संयोजन का यह तरीका राट्यू (Rateau) एवं जोयली टरबाइन में व्यवहार में लाया जाता है (देखें चित्र २७)।
गतिमान फलकपंक्ति में अवशोषित होती है। यह क्रिया तब तक चलती रहती है, जब तक संपूर्ण दाबपात टर्बाइन में अवशोषित न हो जाए। दाब संयोजन का यह तरीका राट्यू (Rateau) एवं जोयली टर्बाइन में व्यवहार में लाया जाता है (देखें चित्र २७)।


;दाब-वेग-संयोजन -  
;दाब-वेग-संयोजन -  
इस तरह के टरबाइन में उपर्युक्त दोनों तरीकों का उपयोग होता है। भाप का पूर्ण दाबपात सभी चरणों में विभक्त किया जात है और प्रत्येक चरण में प्राप्त गति को भी संयोजित कर दिया जाता है। इससे यह लाभ होता है कि प्रत्येक चरणा में उच्च दाबपात की प्राप्ति होती है, जिसके फलस्वरूप कम चरणों की आवश्यकता पड़ती है। इसीलिए इस तरह के टरबाइन का आकार छोटा होता है। कर्टिस टरबाइन इसी तरह का है (देखें चित्र २८)
इस तरह के टर्बाइन में उपर्युक्त दोनों तरीकों का उपयोग होता है। भाप का पूर्ण दाबपात सभी चरणों में विभक्त किया जात है और प्रत्येक चरण में प्राप्त गति को भी संयोजित कर दिया जाता है। इससे यह लाभ होता है कि प्रत्येक चरणा में उच्च दाबपात की प्राप्ति होती है, जिसके फलस्वरूप कम चरणों की आवश्यकता पड़ती है। इसीलिए इस तरह के टर्बाइन का आकार छोटा होता है। कर्टिस टर्बाइन इसी तरह का है (देखें चित्र २८)
;वेग आरेख (diagram) - टरबाइन के गतिमान्‌ फलक के प्रवेश एवं निकास सिरे पर भाप की विभिन्न गतियों को वेग आरेख
;वेग आरेख (diagram) - टर्बाइन के गतिमान्‌ फलक के प्रवेश एवं निकास सिरे पर भाप की विभिन्न गतियों को वेग आरेख


चित्र २८. दाब वेग संयोजन
चित्र २८. दाब वेग संयोजन
पंक्ति ३०६: पंक्ति २८५:
द्वारा प्रदर्शित किया जाता है। (देखें चित्र २९) इस चित्र में अ व स फलक के प्रवेश सिरे पर का वेग आरेख है, जिसमें ब स भाप का परम प्रवेशवेग (absolute inlet-velocity), अ ब फलकवेग एवं अ स भाप का आपेक्षिक प्रवेशवेग है। अ ब द फलक के निकास सिरे पर का वेग आरेख है। इसमें अ ब फलकवेग, अ द भाप का निकास आपेक्षिक वेग एवं ब द भाप का परम निकास वेग है। द विंदु से द य एवं स विंदु से स फ, अ ब से बढ़े हुए भागों पर लंब खींचे गए हैं। स फ ओर द य क्रमश: भाप का प्रवेश एवं निकास अक्षवेग व फ और व य कमश: भाप की स्पर्शीय (tangential) प्रवेश एवं निकास गतियाँ हैं। कोण अ ब स से टोंटी कोण है। कोण फ अ स और कोण ब अ द क्रमश: फलक के प्रवेश एवं निकास कोण हैं।
द्वारा प्रदर्शित किया जाता है। (देखें चित्र २९) इस चित्र में अ व स फलक के प्रवेश सिरे पर का वेग आरेख है, जिसमें ब स भाप का परम प्रवेशवेग (absolute inlet-velocity), अ ब फलकवेग एवं अ स भाप का आपेक्षिक प्रवेशवेग है। अ ब द फलक के निकास सिरे पर का वेग आरेख है। इसमें अ ब फलकवेग, अ द भाप का निकास आपेक्षिक वेग एवं ब द भाप का परम निकास वेग है। द विंदु से द य एवं स विंदु से स फ, अ ब से बढ़े हुए भागों पर लंब खींचे गए हैं। स फ ओर द य क्रमश: भाप का प्रवेश एवं निकास अक्षवेग व फ और व य कमश: भाप की स्पर्शीय (tangential) प्रवेश एवं निकास गतियाँ हैं। कोण अ ब स से टोंटी कोण है। कोण फ अ स और कोण ब अ द क्रमश: फलक के प्रवेश एवं निकास कोण हैं।


====भाप टरबाइन में हानियाँ====
====भाप टर्बाइन में हानियाँ====
एक आदर्श टरबाइन में भाप द्वारा किया गया कार्य रैंकिन कार्य (Rankine) के बराबर होता है, अर्थात्‌ यह रुद्धोष्म उष्मापात (adiabatic heat drop) के तुल्य होगा। व्यवहार में होनेवाली अनेक हानियों द्वारा यह कार्य अत्यंत कम हो जाता है। प्रथम हानि वेगनियंत्रक वाल्व में होती है, जहाँ भाप की दाब अवरोध (throttling) द्वारा ५ से लेकर १० प्रतिशत तक कम हो जाती है। उच्च-दाब-टोंटी-पेटी में घर्षण एवं भँवर (friction and eddies) द्वारा भाप की दाब में फिर कुछ कमी हो जाती है, किंतु सबसे अधिक हानि टोंटी में होती हैं। उष्मीय दक्षता के लिये छोटे छोटे फलक उपयुक्त नहीं होते, किंतु यदि फलक की ऊँचाई बढ़ाई जाए तो उच्चदाब भाप, भाप की अधिक घतना और परिमित मात्रा के कारण, प्रथम चरण की संपूर्ण परिधि को ढक नहीं पाती है, जिससे आंशिक प्रवेशहानि होती है। इसका परिणाम यह होता है कि जो फलक भाप के जेट के प्रभाव के अंदर नहीं होते, वे आवरण में भरी हुई भाप का मंथन करते रहते हैं। इसके करण पंखा या वाति हानि होती है। उच्चदाब टरबाइन का परिभ्रमक भी स्वयं घने माध्यम में चलता है, जिसमें इसे अत्यंत तरल अवरोध का सामना करना पड़ता है एवं इसके कारण चकती - घर्षण-हानि (disc friction loss) होती है। टरबाइन में विभिन्न चरणों द्वारा प्रवाहित भाप की इन हानियों का हमेशा सामना करना पड़ता है। ज्यों-ज्यों भाप की घनता में कमी होती जाती है, त्यों त्यों ये हानियाँ भी कम होती जाती हैं। इनके अलावा विकिरण हानि तो होती ही है। वेयरिंग में घर्षण द्वारा भी हानियाँ होती हैं। टरबाइन में कार्य करने के बाद भाप संघनक में प्रवेश करती है एवं इस समय भी इसमें कुछ वेग होता है। इस गतिज ऊर्जा की हानि को अंतिम या अवशिष्ट हानि (terminal or leaving loss) कहते हैं।
एक आदर्श टर्बाइन में भाप द्वारा किया गया कार्य रैंकिन कार्य (Rankine) के बराबर होता है, अर्थात्‌ यह रुद्धोष्म उष्मापात (adiabatic heat drop) के तुल्य होगा। व्यवहार में होनेवाली अनेक हानियों द्वारा यह कार्य अत्यंत कम हो जाता है। प्रथम हानि वेगनियंत्रक वाल्व में होती है, जहाँ भाप की दाब अवरोध (throttling) द्वारा ५ से लेकर १० प्रतिशत तक कम हो जाती है। उच्च-दाब-टोंटी-पेटी में घर्षण एवं भँवर (friction and eddies) द्वारा भाप की दाब में फिर कुछ कमी हो जाती है, किंतु सबसे अधिक हानि टोंटी में होती हैं। उष्मीय दक्षता के लिये छोटे छोटे फलक उपयुक्त नहीं होते, किंतु यदि फलक की ऊँचाई बढ़ाई जाए तो उच्चदाब भाप, भाप की अधिक घतना और परिमित मात्रा के कारण, प्रथम चरण की संपूर्ण परिधि को ढक नहीं पाती है, जिससे आंशिक प्रवेशहानि होती है। इसका परिणाम यह होता है कि जो फलक भाप के जेट के प्रभाव के अंदर नहीं होते, वे आवरण में भरी हुई भाप का मंथन करते रहते हैं। इसके करण पंखा या वाति हानि होती है। उच्चदाब टर्बाइन का परिभ्रमक भी स्वयं घने माध्यम में चलता है, जिसमें इसे अत्यंत तरल अवरोध का सामना करना पड़ता है एवं इसके कारण चकती - घर्षण-हानि (disc friction loss) होती है। टर्बाइन में विभिन्न चरणों द्वारा प्रवाहित भाप की इन हानियों का हमेशा सामना करना पड़ता है। ज्यों-ज्यों भाप की घनता में कमी होती जाती है, त्यों त्यों ये हानियाँ भी कम होती जाती हैं। इनके अलावा विकिरण हानि तो होती ही है। वेयरिंग में घर्षण द्वारा भी हानियाँ होती हैं। टर्बाइन में कार्य करने के बाद भाप संघनक में प्रवेश करती है एवं इस समय भी इसमें कुछ वेग होता है। इस गतिज ऊर्जा की हानि को अंतिम या अवशिष्ट हानि (terminal or leaving loss) कहते हैं।


भरण तापन की पुनर्जननीय प्रणाली (Regenerative system of feed heating) - टरबाइन संयंत्र की दक्षता को बढ़ाने के लिए इस प्रणाली का व्यवहार किया जाता है (चित्र ३०)। इसमें भाप अ, ब और स तीन बिंदुओं से टरबाइन से निकालकर तीन तापकों में भेजी जाती है। अंतिम तापक से निकलकर भाप आर्द्रावस्था में जलाशय में प्रवेश करती है, जहाँ से होकर
भरण तापन की पुनर्जननीय प्रणाली (Regenerative system of feed heating) - टर्बाइन संयंत्र की दक्षता को बढ़ाने के लिए इस प्रणाली का व्यवहार किया जाता है (चित्र ३०)। इसमें भाप अ, ब और स तीन बिंदुओं से टर्बाइन से निकालकर तीन तापकों में भेजी जाती है। अंतिम तापक से निकलकर भाप आर्द्रावस्था में जलाशय में प्रवेश करती है, जहाँ से होकर


चित्र २९. वेग आरेख
चित्र २९. वेग आरेख


भरणजल प्रवाहित होता है। चूँकि भरणजल भाप से अधिक ठंड़ा रहता है, अत: यह भाप से गर्मी लेकर स्वयं गरम हो जाता है। भरणजल एक तापक से दूसरे में, फिर दूसरे से तीसरे में जाता है। अंतिम तापक से निकलकर भरणजल अत्यंत गरम हो जाता है, जिससे वाष्पित्र में ताप की बचत होती है। इसके कारण टरबाइन संयंत्र की दक्षता बढ़ जाती है।
भरणजल प्रवाहित होता है। चूँकि भरणजल भाप से अधिक ठंड़ा रहता है, अत: यह भाप से गर्मी लेकर स्वयं गरम हो जाता है। भरणजल एक तापक से दूसरे में, फिर दूसरे से तीसरे में जाता है। अंतिम तापक से निकलकर भरणजल अत्यंत गरम हो जाता है, जिससे वाष्पित्र में ताप की बचत होती है। इसके कारण टर्बाइन संयंत्र की दक्षता बढ़ जाती है।


====भाप का पुन: तापन====
====भाप का पुन: तापन====
टरबाइन में प्रसारित होते समय भाप प्रथम कुछ चरणों के बाद आर्द्र हो जाती है। आर्द्र भाप में रहनेवाले जलकण फलकों पर आघात करते हैं, जिससे फलक की आयु कम हो जाती है। अत: फलक संक्षरण को हटाने
टर्बाइन में प्रसारित होते समय भाप प्रथम कुछ चरणों के बाद आर्द्र हो जाती है। आर्द्र भाप में रहनेवाले जलकण फलकों पर आघात करते हैं, जिससे फलक की आयु कम हो जाती है। अत: फलक संक्षरण को हटाने


चित्र ३०. भरण तापन की पुनर्जनन प्रणाली
चित्र ३०. भरण तापन की पुनर्जनन प्रणाली


१. टरबाइन; २. संघनक; ३. जलाशय तथा ४. वाष्पित्र।
१. टर्बाइन; २. संघनक; ३. जलाशय तथा ४. वाष्पित्र।


भाप की घर्षण हानि को कम करने एवं टरबाइन की उष्मीय क्षमता को बढ़ाने के लिये भाप को आर्द्र होते ही टरबाइन से निकाल लिया जाता है। इसके बाद यह पुन:तापक (reheater) में प्रवेश करती है, जहाँ यह फिर से ताप प्रहण करके
भाप की घर्षण हानि को कम करने एवं टर्बाइन की उष्मीय क्षमता को बढ़ाने के लिये भाप को आर्द्र होते ही टर्बाइन से निकाल लिया जाता है। इसके बाद यह पुन:तापक (reheater) में प्रवेश करती है, जहाँ यह फिर से ताप प्रहण करके


चित्र ३१. भाप का पुन: तापन
चित्र ३१. भाप का पुन: तापन


१. टरबाइन; २. पुन:तापक; ३. वाष्पित्र; ४. निकासनली; ५. जलाशय; ६. और ७ पंप तथा ८. संघनक।
१. टर्बाइन; २. पुन:तापक; ३. वाष्पित्र; ४. निकासनली; ५. जलाशय; ६. और ७ पंप तथा ८. संघनक।


अधितप्त हो जाती है और तब यह टरबाइन के अगले चरण में लौट जाती है। पुन: तापन के लिये भाप अभिकल्प के अनुसार, टरबाइन के एक या अधिक स्थानों से बाहर निकाली जाती है (देखें चित्र ३१)।
अधितप्त हो जाती है और तब यह टर्बाइन के अगले चरण में लौट जाती है। पुन: तापन के लिये भाप अभिकल्प के अनुसार, टर्बाइन के एक या अधिक स्थानों से बाहर निकाली जाती है (देखें चित्र ३१)।
*टरबाइन के विशेष रूप - ये निम्नलिखित हैं -
*टर्बाइन के विशेष रूप - ये निम्नलिखित हैं -


;निष्कर्षण टरबाइन (Extraction Turbine) -  
;निष्कर्षण टर्बाइन (Extraction Turbine) -  
बहुत से उद्योगों में शक्ति के साथ ही साथ उष्मा की भी माँग होती है, जो विधायन (processing) कार्य के लिये आवश्यक होती है। चूँकि ३०० पाउंड प्रति वर्ग इंच पर संतृप्त भाप की पूर्ण उष्मा ३० पाउंड प्रति वर्ग इंच पर की पूर्ण उष्मा से चार प्रतिशत ही अधिक होती है, अत: उच्चदाब की भाप का जनन उष्मागतिकी (thermodynamics) के अनुसार अधिक लाभप्रद होगा। निष्कर्षण टरबाइन में इस भाप को पहले कार्य करने के लिए प्रसारित किया जाता है एवं माँग के अनुसार भाप की कुछ मात्रा को निम्न दाब पर विधायन कार्य के लिए बाहर निकाल लिया जाता है। शेष बची भाग को टरबाइन में संघनक दाब तक प्रसारित किया जाता है। इस तरह के टरबाइन को निष्कर्षण टरबाइन कहते हैं एवं इस टरबाइन के दो भाग, उच्चदाब भाग और निम्नदाब भाग, होते हैं।
बहुत से उद्योगों में शक्ति के साथ ही साथ उष्मा की भी माँग होती है, जो विधायन (processing) कार्य के लिये आवश्यक होती है। चूँकि ३०० पाउंड प्रति वर्ग इंच पर संतृप्त भाप की पूर्ण उष्मा ३० पाउंड प्रति वर्ग इंच पर की पूर्ण उष्मा से चार प्रतिशत ही अधिक होती है, अत: उच्चदाब की भाप का जनन उष्मागतिकी (thermodynamics) के अनुसार अधिक लाभप्रद होगा। निष्कर्षण टर्बाइन में इस भाप को पहले कार्य करने के लिए प्रसारित किया जाता है एवं माँग के अनुसार भाप की कुछ मात्रा को निम्न दाब पर विधायन कार्य के लिए बाहर निकाल लिया जाता है। शेष बची भाग को टर्बाइन में संघनक दाब तक प्रसारित किया जाता है। इस तरह के टर्बाइन को निष्कर्षण टर्बाइन कहते हैं एवं इस टर्बाइन के दो भाग, उच्चदाब भाग और निम्नदाब भाग, होते हैं।
;पश्चदाब टरबाइन (Back Pressure Turbine) -  
;पश्चदाब टर्बाइन (Back Pressure Turbine) -  
यह टरबाइन निष्कर्षण टरबाइन का ही एक रूप है। इसमें विधायन कार्य के लिए संपूर्ण भाप को बाहर निकाल लिया जाता है। इससे भाप सिर्फ उच्चदाब भाग में ही प्रसारित होती है।
यह टर्बाइन निष्कर्षण टर्बाइन का ही एक रूप है। इसमें विधायन कार्य के लिए संपूर्ण भाप को बाहर निकाल लिया जाता है। इससे भाप सिर्फ उच्चदाब भाग में ही प्रसारित होती है।
;निम्नदाब टरबाइन - निम्नदाब टरबाइन वह टरबाइन है जिसमें भाप कार्य करने के लिये निम्न दाब पर प्रवेश करती है और निम्नतम दाब तक प्रसारित होती है। यदि निम्नदाब भाप लगातार मिलती रहे (उदाहरणार्थ, भाप इंजन निकास द्वारा) तो एक निम्नदाब टरबाइन का प्रयोग करके समूचे संयंत्र की क्षमता बढ़ाई जा सकती है। उष्मागतिकी के सिद्धांत के अनुसार समान दाबसीमा पर कार्य करनेवाले निम्नदाब टरबाइन में निम्नदाब इंजन की अपेक्षा अधिक कार्य प्राप्त होता है। यदि भाप का प्रदाय लगातार न हो तो उष्मासंचायक का व्यवहार किया जाता है।
;निम्नदाब टर्बाइन - निम्नदाब टर्बाइन वह टर्बाइन है जिसमें भाप कार्य करने के लिये निम्न दाब पर प्रवेश करती है और निम्नतम दाब तक प्रसारित होती है। यदि निम्नदाब भाप लगातार मिलती रहे (उदाहरणार्थ, भाप इंजन निकास द्वारा) तो एक निम्नदाब टर्बाइन का प्रयोग करके समूचे संयंत्र की क्षमता बढ़ाई जा सकती है। उष्मागतिकी के सिद्धांत के अनुसार समान दाबसीमा पर कार्य करनेवाले निम्नदाब टर्बाइन में निम्नदाब इंजन की अपेक्षा अधिक कार्य प्राप्त होता है। यदि भाप का प्रदाय लगातार न हो तो उष्मासंचायक का व्यवहार किया जाता है।
'मिश्रित दाब टरबाइन - ऊपर बताए गए उष्मासंचायक की क्षमता भी सीमित होती है। जब निम्नदाब भाप की मात्रा माँग से बहुत कम हो जाती है, तब इस कमी को पूरा करने के लिए वाष्पित्र से भाप की दाब को कम करके टरबाइन में भेजा जाता है। इस तरह उच्चदाब और निम्नदाब पर आनेवालनी भाप के दो प्रदाय एक ही टरबाइन में आते हैं। इस तरह के टरबाइन को मिश्रितदाब टरबाइन कहते हैं। इस टरबाइन में भाप इंजन द्वारा निम्नदाबभाप-निकास, या उष्मासंचायक, का व्यवहार किया जाता है।  
'मिश्रित दाब टर्बाइन - ऊपर बताए गए उष्मासंचायक की क्षमता भी सीमित होती है। जब निम्नदाब भाप की मात्रा माँग से बहुत कम हो जाती है, तब इस कमी को पूरा करने के लिए वाष्पित्र से भाप की दाब को कम करके टर्बाइन में भेजा जाता है। इस तरह उच्चदाब और निम्नदाब पर आनेवालनी भाप के दो प्रदाय एक ही टर्बाइन में आते हैं। इस तरह के टर्बाइन को मिश्रितदाब टर्बाइन कहते हैं। इस टर्बाइन में भाप इंजन द्वारा निम्नदाबभाप-निकास, या उष्मासंचायक, का व्यवहार किया जाता है।  






<s>(चंद्रभूषण मिश्र)</s>




==टीका टिप्पणी और संदर्भ==
==टीका टिप्पणी और संदर्भ==
<references/>
<references/>
 
[[Category:हिन्दी_विश्वकोश]]
[[Category:नया पन्ना]]
[[Category:वैज्ञानिक उपकरण]]
[[Category:विज्ञान]]
__INDEX__
__INDEX__

०६:३७, ९ सितम्बर २०११ के समय का अवतरण

लेख सूचना
टर्बाइन
पुस्तक नाम हिन्दी विश्वकोश खण्ड 5
पृष्ठ संख्या 115
भाषा हिन्दी देवनागरी
लेखक ऐंडू जैमिसन, प्रो. उब्लू. जे लिमहैम
संपादक फूलदेव सहाय वर्मा
प्रकाशक नागरी प्रचारणी सभा वाराणसी
मुद्रक नागरी मुद्रण वाराणसी
संस्करण सन्‌ 1964 ईसवी
स्रोत वाटर ह्वील ऐंड टर्बाइन मशीनरी, खंड ६, मशीनरी पब्लिशिंग कं. लि., लंदन, ऐंडू जैमिसन : हाइड्रॉलिक्स; प्रो. उब्लू. जे लिमहैम: मिकैनिकल इंजीनियरिंग।
उपलब्ध भारतडिस्कवरी पुस्तकालय
कॉपीराइट सूचना नागरी प्रचारणी सभा वाराणसी
लेख सम्पादक चंद्रभूषण मिश्र

टर्बाइन घूर्णक मोटर या इंजिन है, जिसमें गैस, जल या भाप की धारा द्वारा, क्रैंक के स्थान पर ईषा बेयरिंग पर घूर्णन करती है। गैस, जल और भाप से जलनेवाले टर्बाइन एक दूसरे से भिन्न होते हैं।

गैस टर्बाइन

इस शब्द की विभिन्न परिभाषाएँ दी जाती हैं। विस्तृत परिभाषा के अनुसार गैस टर्बाइन वह मूल चालक (prime mover) है जिसके संपूर्ण उष्मीय चक्र में कार्यकारी तरल गैसीय ही बना रहता है एवं जिसके सभी यंत्रांगों की गति परिभ्रमी होती है। संकीर्ण परिभाषा के अनुसार इस शब्द का प्रयोग सिर्फ उस मुख्य टर्बाइन अंग के लिये किया जाता है जिसका माध्यम गरम वायु होती है। कुछ विद्वानों के मतानुसार गैस टर्बाइन वह यंत्र है जिसमें प्रवाह प्रक्रम अविरत रहता है एवं शक्ति टर्बाइन द्वारा प्राप्त होती है।

संक्षिप्त इतिहास

प्रथम गैस टर्बाइन की निर्माणतिथि अभी तक अज्ञात है किंतु १३० ई. पू. के मिस्र में हीरो ने टर्बाइन के सदृश एक ऐसे यंत्र का निर्माण किया था जो गरम वायु की सहायता से चलता था संभवत: प्रथम ज्ञात गैस टर्बाइन का निर्माण सन्‌ १५५० ई. में हुआ एवं इसका निर्माता लियोनार्डो दा विंशी था। यह यंत्र चिमनी के पास रखा जाता था और इससे होकर चिमनी की गैस ऊपर जाती थी। इस यंत्र के द्वारा बहुत कम शक्ति प्राप्त होती थी, जिसका उपयोग मांस को भूनने के लिए बने हुए पात्र को चलाने के लिए किया जाता था। गैस टर्बाइन का सर्वप्रथम पेटेंट इंग्लैंड में जॉन बारबर ने १७९१ ई. में कराया था। आश्चर्य की बात तो यह है कि उसका बनाया गैस टर्बाइन आधुनिक विकसित सिद्धान्त पर आधारित पाया गया है। उसके बाद जॉन डाबेल ने १८०८ ई. में दूसरा पेटेंट इंग्लैंड में ही कराया। १८३७ ई. में पेरिस में ब्रेसन ने एक ऐसे टर्बाइन का पेटेंट कराया, जिसमें सभी आवश्यक कल पुर्जे थे। उच्च शक्ति वाले गैसे टर्बाइन का निर्माण १८७२ ई० में स्टोल्ज ने किया था, जो बहुपद (multi-stage) अभिक्रिया टर्बाइन एवं बहुपद अक्षीय-प्रवाह संपीडक (Arial Flow Compressor) द्वारा युक्त था। उस समय वैज्ञानिकों को वायुगतिकी (Aerodynamics) का ज्ञान कम था, जिसस दक्ष संपीडक का निर्माण संभव नहीं था। संपीडक की डिज़्ााइन सुचारू रूप से न किए जाने के कारण अनेक हानियाँ होती हैं, जिनके कारण टर्बाइन द्वारा प्राप्त कार्य का अधिकांश भाग संपीडक को चलाने में ही खर्च हो जाता है और बहुत ही कम शक्ति उपलब्ध होती है। दहनकक्ष की डिजाइन एवं निर्माण भी अधिक विकसित नहीं हो पाया था। अनुसंधानकर्ताओं को इन समस्याओं के सिवाय उपयुक्त निर्माण सामग्री की विकट समस्या का भी सामना करना पड़ता था। इन्हीं सब कारणों से प्रारंभिक गैस टर्बाइन सफल नहीं हो पाए।

प्रथम पेटेंट

अमरीका में इस टर्बाइन का प्रथम पेटेंट चार्ल्स कर्टिस ने १८९५ ई. में कराया था। यह टर्बाइन और सभी टर्बाइनों से अच्छा प्रमाणित हुआ। उस समय तक वैज्ञानिकों का ध्यान इस क्षेत्र की ओर आकर्षित हो चुका था। इसके बाद अनेक तरह की डिजाइन के गैस टर्बाइन बनाए गए, जिनमें निम्नलिखित प्रमुख हैं: १९०५ ई० में फ्रांस में अर्मेगंड और लेमाल द्वारा निर्मित प्रथम बहुपद अपकेंद्रीसंपीडक-युक्त गैस टर्बाइन, १९०५ ई. में डा. होल्जवर्थ द्वारा निर्मित स्थिर आयतन टर्बाइन, १९०८ ई० में फ्रांस में कर्बोडीन द्वारा निर्मित आवेग (impulse) टर्बाइन, १९१३ ई. में बिशाँफ द्वारा निर्मित विस्फोट प्रकार का टर्बाइन तथा १९१४ ई. में बिशॉफ द्वारा निर्मित स्थिर-दाब टर्बाइन।

  • उपर्युक्त डिजाइनों के अलावा और भी विभिन्न डिजाइनों के टर्बाइनों का विकास होता रहा है। वैज्ञानिकों के अथक प्रयास के फलस्वरूप आज गैस टर्बाइन की नींव पक्की हो गर्ह है।

गैस टर्बाइन की उष्मागतिकी (Thermodynamics) गैस टर्बाइन का सबसे सरल रूप चित्र १. में दिखाया गया है। वायु मंडल से वायु संपीडक में प्रवेश करती है, जहाँ इसका संपीड़न होता है। संपीडित वायु को दहनकक्ष में लाया जाता है, जिसमें ईधंन की सहायता से वायु गरम की जाती है। दहन कक्ष से निकलकर गरम वायु टर्बाइन में जाती है एवं इस यंत्र के द्वारा कार्य करती है। कार्य करने के बाद वायु बाहर निकल जाती है। दहन करने की दो प्रणालियाँ व्यवहार में लाई जाती हैं :

  1. स्थिर दाब तथा
  2. स्थिर आयतन।

इन दो प्रणालियों में स्थिर दाब चक्र अच्छा पाया गया है। गैसे टर्बाइन में व्यवहृत उष्मागतिकी चक्र हैं :

  1. खुला चक्र
  2. बंद चक्र।

प्रथम प्रकार के चक्र में वायुमंडल से ताजी वायु संपीडक में प्रवेश करती एवं टर्बाइन में कार्य करने के बाद वायुमंडल में ही निष्कासित हो जाती है, किंतु दूसरे प्रकार के चक्र में बाहर से ताजी वायु नहीं आती है, वरन्‌ उसी वायु या गैस का बारंबार परिवहन होता है।

चित्र:Model Of Turbine.jpg
गैस टर्बाइन का चित्र
  • टर्बाइन की दक्षता को बढ़ाने के लिए विभिन्न प्रकार के उपकरण व्यवहार में लाए जाते हैं, जिनमें निम्नलिखित मुख्य हैं :
  1. उष्मा विनिमयित्र (Heat Exchanger) संपीडक से निकलकर संपीडित वायु इसमें (देखें चित्र २) एक ओर से प्रवेश करती है एवं दूसरी ओर से टर्बाइन द्वारा निष्कासित गैस प्रवेश करती है। गैस संपीड़ित वायु से अधिक गरम होती है। इसीलिये ताप गैस से संपीड़ित वायु में प्रवेश करता है तथा संपीडित वायु और भी गरम हो जाती है। संपीडित वायु के अधिक गरम होने से दहनकक्ष में ईधंन की कम आवश्यकता होती है। इससे संपूर्ण संयंत्र की दक्षता बढ़ जाती है।
  2. अंत:शीतलक (Intercooler) - संपीड़न के कार्य में कुछ भी कमी होने से उपलब्ध शक्ति की वद्धि हो जाती है, जिससे संयंत्र की दक्षता बढ़ जाती है। संपीड़न के कार्य को कम करने के लिये वायु निम्न दाब संपीड़क में संपीड़ित होकर अंत:शीतलक में प्रवेश करती है, जहाँ उसका ताप कम करके उसको उच्च दाब संपीड़क में पुन: संपीड़ित होने के लिये भेजा जाता है।
चित्र:Intercooler.jpg
अंत:शीतलक
  1. पुनस्तापक (Reheater) प्रथम टर्बाइन में कार्य करने के बाद गैस पुनस्तापक (देखें चित्र ४) में प्रवेश करती है, जहाँ इसे पुनस्तापित किया जाता है। पुनस्तापक से निकलकर गैस द्वितीय टर्बाइन में कार्य करने के लिये प्रवेश करती है।
चित्र:Reheater.jpg
पुनस्तापक

मुख्य अंग

गैस टर्बाइन के मुख्य अंग - ये निम्नलिखित हैं :

संपीड़क

गैस टर्बाइन में दो प्रकार के संपीड़क लगाए जाते हैं, अक्षप्रवाह एवं अपकेद्रिक। अक्षप्रवाह संपीड़क का व्यवहार पहले बहुत ही कम होता था, किंतु पिछले कुछ वर्षों में वायुगतिकी विज्ञान का विकास होने से इस तरह के संपीड़क का डिजाइन सरल हो गया है एवं इसकी दक्षता भी बढ़ गई है। औद्योगिक गैस टर्बाइन में इस प्रकार के संपीड़क का अधिक व्यवहार होता है, क्योंकि इसके द्वारा उच्च दाब अनुपात एवं उच्च दक्षता की प्राप्ति होती है। अपकेंद्रिक संपीड़क हल्का होने के कारण वायुयान में अधिक व्यवहृत होता है।

दहनकक्ष

जैसा ऊपर बताया जा चुका है, इस कक्ष में ईधंन की सहायता से संपीड़ित वायु को गरम किया जाता है। इस अंग की डिज़ाइन अत्यंत नाजुक एवं जटिल होती है।

टर्बाइन

इसके द्वारा कार्य प्राप्त होता है। टर्बाइन की सहायता से संपीड़क को चलाया जाता है, जिससे टर्बाइन में प्राप्त कार्य का कुछ भाग संपीड़क को चलाने में खर्च हो जाता है।

  • इसीलिये, उपलब्ध शक्ति = टर्बाइन द्वारा प्राप्त कार्य - संपीड़क में खर्च किया हुआ कार्य।

गैस टर्बाइन की सामग्री

गैस टर्बाइन की उष्मीय दक्षता टर्बाइन में कार्य करनेवाले गैसे के प्रवेशताप पर निर्भर करती है। यह ताप जितना अधिक होगा दक्षता उतनी ही अधिक होगी, किंतु गैस के ताप को बढ़ाने के पहले टर्बाइन के फलकों के लिए व्यवहृत सामग्री में भी उस ताप पर कार्य करने की क्षमता होती चाहिए। इस क्षेत्र में गहन अनुसंधान हुए हैं एवं बहुत तरह की नई नई सामग्रियों का विकास हुआ है। ये सामग्रियाँ उच्च ताप एवं उच्च प्रतिबल (stress) की विषम अवस्थाओं में भी सुचारु रूप से कार्य कर पाती हैं।

परिभ्रमक फलक शीतलन

नई नई निर्माण सामग्रियों के विकास के साथ ही गैस टर्बाइन की उष्मीय दक्षता को बढ़ाने का दूसरा तरीका गरम पुर्जों को ठंडा करना है। परिभ्रमक पर शोधन कार्य हो रहे हैं। खोखले फलकों का निर्माण किया गया है एवं इन्हें संपीड़क द्वारा वायु भेजकर ठंडा किया जाता है। इस तरह से फलकों के साथ ही साथ परिभ्रमक भी ठंडा होता रहता है।

गैस टर्बाइन में व्यवहृत ईंधन

गैस टर्बाइन में प्राय: सभी प्रकार के ईंधन व्यवहृत होते हैं। पतले तेल को जलाने में कोई कठिनाई नहीं होती। गाढ़े तेल को जलाने के लिये विशेष प्रकार के प्रसाधन की आवश्यकता होती है, क्योंकि इस प्रकार के तेल को जलाते समय अग्रलिखित समस्याओं का सामान करना पड़ता है: तेल में विद्यमान ठोस कणों का दक्षतापूर्वक दहन, टर्बाइन फलकों पर राख कर जमा होना तथा टर्बाइन फलकों एवं अन्य पुर्जों को तेल के क्षारण प्रभाव से बचाना।

गैस टर्बाइन की उपयोगिता

गैस टर्बाइन मूलचालक है। यह परिभ्रमी प्रकार का यंत्र है। इसीलिये पश्चाग्र (reciprocating) मूलचालकों की अपेक्षा इसमें घर्षणहानि बहुत ही कम होती है। गैस टर्बाइन की यांत्रिक दक्षता ९५ से ९७ प्रति शत तक होती है, जब की अंतर्दहन इंजन की दक्षता ८० से ८५ प्रति शत तक ही हो पाती है। गैस टर्बाइन का संतुलन अच्छा रहता है, जिससे इसमें कंपन कम होता है। अन्यान्य मूल चालकों की तुलना में यह दीर्घायु होता है। विद्युदुत्पादन के सिवाय लोकोमोटिव, (locomotive रेल के इंजन), मोटरगाड़ी जलयान, वायुयान आदि के मूल चालक के रूप में इसका व्यवहार किया जाता है।

गैस टर्बाइन की समस्याएँ

गैस टर्बाइन की उष्मीय दक्षता अब भी कम ही होती है। यद्यपि गैस टर्बाइन युक्त यंत्र की चाल की दिशा बदलने के लिए बहुत तरह के उपसाधन निकाले गए हैं तथापि यह सुगमतापूर्वक बदली नहीं जा सकती। गैस टर्बाइन स्वत:प्रवर्ती (self-starting) मूलचालक नहीं है। इसके अलावा एक समस्या यह भी है कि गैस टर्बाइन की दक्षता, शक्ति की माँग के कम होने से, कम हो जाती है। परंतु ये समस्याएँ असाध्य नहीं हैं। आजकल भी शोधनकार्य हो रहे हैं एवं आशा की जाती है कि कुछ वर्षों में गैस टर्बाइन सर्वोत्तम मूल चालकयंत्र हो जायगा। (चं. भू. मि.)

जल टर्बाइन

जल टर्बाइन या जलचक्र

उन मूल चालक यंत्रों (prime movers) को कहते हैं जो जलराशि में निहित स्थितिज ऊर्जा को यांत्रिक कार्य में परिवर्तित कर देते हैं। पनचक्कियाँ विभिन्न प्रकार से बनाई जाने पर भी बड़ी ही सरल प्रकार की युक्तियाँ (devices) हैं, जिनका प्रयोग प्रागैतिहासिक काल से ही शक्ति उत्पादन करने के लिए होता चला आया है। समय समय पर आवश्यकताओं तथा परिस्थितियों से प्रेरित होकर लोगों ने इनमें अनेक सुधार किए, अत: जल टर्बाइन भी पनचक्की का ही विकसित रूप है। पिछली अर्धशताब्दी से तो इनका इतना उपयोग बढ़ गया है कि इनके द्वारा लगभग सभी सभ्य देशों में जगह जगह, छोटे बड़े अनेक जल-विद्युच्छक्ति-गृह बनाए जाने लगे। इस कारण सुदूर जलहीन देहातों में भी बड़े सस्ते भाव पर बिजली प्राप्त होने लगी और नाना प्रकार के उद्योग धंधों के विकास को प्रत्साहन मिला।

जिन सिद्धांतों के आधार पर इन संयंत्रों की अभिकल्पना की जाती है, वे सभी प्रकार के प्रथम चालक यंत्रों में लागू होते हैं, जिनका विवेचन भाप इंजन ओर भाप टर्बाइन शीर्षक लेखों में विस्तार से किया गया है। इनके अतिरिक्त बाँध, जलीयशक्ति पोषण, जलविज्ञान और जलइंजीनियरी शीर्षक लेख भी द्रष्टव्य हैं, जिनमें जल की स्थितिज तथा गतिज ऊर्जा, बहाब आदि का विषय विस्तार से समझाया गया है।

जल राशि में निहित स्थितिज ऊर्जा का गतिज ऊर्जा में परिवर्तन कैसे होता है, इसे संक्षेप में समझने के लिए कल्पना कीजिए कि कुछ ऊँचाई पर स्थित एक टंकी में से पानी की एक धारा उसी के नीचे स्थित जलाशय में गिर रही है। इस टंकी में भरे प्रति पाउंड पानी में, ऊँचाई के कारण कुछ फुट-पाउंड स्थितिज ऊर्जा निहित है। जब यह पानी नीचे गिरता है तब नीचे गिरते समय, यह स्थितिज ऊर्जा क्रमश: गतिज ऊर्जा में परिवर्तित होने लगती है और जब वह धारा नीचेवाले जलाशय की जलतल रेखा पर पहुँचती है तब उसकी समस्त स्थितिज ऊर्जा गतिज ऊर्जा में परिणत हो चुकती है। इस जल-तल-रेखा तक पहुँचते समय यदि उस एक पाउंड पानी का वेग व (V) फुट प्रति सेंकड हो तो उसमें फुट पाउंड गतिज ऊर्जा होगी। यदि टंकी की ऊँचाई उ (h) फुट मान लें तो टंकी के प्रति पाउंड पानी में ऊ(H) फुट पाउंड स्थितिज ऊर्जा होगी। अत: नीचे पहुँचने पर।

  • स्थितिज ऊर्जा की हानि = गतिज ऊर्जा की प्राप्ति, अर्थात्‌

अब ज्यों ही वह पानी जलाशय में प्रविष्ट होगा, उसके पानी में विक्षोभ उत्पन्न हो जाएगा और फिर थोड़ी देर में शांत भी हो जायगा। इस उदाहरण में, ऊपर से आनेवाले पानी में निहित गतिज ऊर्जा जलाशय के पानी में विक्षोभ उत्पन्न करके ही बरबाद हो गई और उससे कोई उपयोगी कार्य नहीं हो सका। यदि वही पानी एक नल में से होकर नीचे आता तो वह उस नल के मुहाने पर दाब उत्पन्न कर किसी जलचक्र अथवा इंजन को चला सकता था। जब भी किसी स्थान पर जल के प्रवाह अथवा वर्चस (head) द्वारा प्राप्त ऊर्जा की सहायता से कोई जलचालित मोटर या टर्बाइन चलाकर शक्ति उन्पादन करने का विचार किया जाता है, तो उसके पहले आस पास में स्थित जलराशि अथवा जलस्रोतों से प्राप्त होने वाली ऊर्जा का यथासाध्य सही अनुमान लगा लिया जाता है। (देखें जलइंजीनियरी और बांध)।

वर्गीकरण

जलचालित मोटरों का वर्गीकरण - यह वर्गीकरण निम्नलिखित प्रकार है :

  1. जलधारा के प्रवाह तथा गुरुत्वाकर्षण जनित ऊर्जा चालित चक्र - ये चक्र जलधारा के प्रवाह में रुकावट डालने पर होलेवाले संघट्टन (impact) अथवा चक्र की डोलचियों में भरे पानी के भार के कारण चला करते हैं।
  2. आवेगचक्र (Impulse Wheels) और टर्बाइन - ये किसी तुंग (nozzle) में से निकलनेवाली पानी की अत्यधिक वेगयुक्त प्रधार (jet) की गतिज ऊर्जा द्वारा चलते हैं। इस प्रकार के आवेगचक्रों का वहीं उपयोग होता है जहाँ पर पानी की मात्रा तो सीमित होती है लेकिन उसका वर्चस्‌ ३०० से ३,००० फुट तक ऊँचा होता है।
  3. प्रतिक्रिया टर्बाइन (Reaction Turbine) - इसमें पानी की गतिज ऊर्जा तथा दाब दोनों का ही उपयोग होता है। ये वहीं लगाए जाते हैं जहाँ परिस्थितियाँ आवेगचक्र तथा आवेग टर्बाइनों के लिए बताई परिस्थितियों से विपरीत होती हैं, अर्थात्‌ जहाँ पानी अल्प वर्चस्‌ युक्त होते हुए भी विपुल मात्रा में प्राप्त हो सकता है। इस पानी का वर्चस्‌ ५ से लेकर ५०० फुट तक हो सकता है।
चित्र:Reaction Turbine.jpg
प्रतिक्रिया टर्बाइन

जलधारा के प्रवाह तथा गुरुत्वाकर्षण जनित ऊर्जा से चलनेवाले चक्रों का उपयोग तो अब देहातों में कुटीर उद्योगों के उपयुक्त ही समझा जाता है, विशेषकर उन पहाड़ी प्रांतों में जहाँ निरंतर झरने बहते रहते हैं। इस प्रकार के चक्रों में अध:प्रवाही (Under-shot), पॉन्सले (Poncelet) मध्यप्रवाही (Breast-wheel) और ऊर्ध्वप्रवाही (Over-shot) चक्र प्रमुख हैं,

.

लेकिन बड़ी मात्रा में विद्युदुत्पादन के लिए ये सर्वथा अनुपयुक्त समझे जाते हैं, फिर भी सहायक मोटर के रूप में, बड़े बिजलीघरों में, ऊर्ध्वप्रवाही चक्र का उपयोग, आवश्यकता पड़ने पर, आधुनिक संयंत्रों के साथ कर लिया जाता है।

अध: प्रवाही चक्र - इस प्रकार के चक्र का सैद्धांतिक आरेखचित्र ५. में दिखाया गया है, जिसकी कार्यक्षमता लगभग २५ प्रति शत ही होने पाती है, क्योंकि इसमें पानी की बहुत सी ऊर्जा व्यर्थ में नष्ट हो जाती है। १,८०० ई० तक इसका उपयोग बहुत हुआ करता था।
चित्र:Reaction Turbine 1.jpg
प्रतिक्रिया टर्बाइन

पॉन्सले का चक्र

इस प्रकार के चक्र का सैद्धातिक आरेखचित्र ६. में दिखाया गया है। यह अर्धप्रवाही चक्र का ही परिष्कृत रूप है। इसकी पंखुड़ियाँ इस प्रकार से मोड़कर गोलाईदार बनाई जाती हैं कि इनमें पानी बिना झटका मारे ही प्रवेश कर जाता है और उनमें से बाहर निकलते समय वह चक्र की परिधि की स्पर्शरेखीय दिशा में होकर ही निकलता है, जिसे चक्र को अधिक आवेग प्राप्त हो जाता है और चक्र की कार्यक्षमता लगभग दुगनी हो जाती है।

मध्यप्रवाही चक्र

इस प्रकार के चक्र का सैद्धांतिक आरेखचित्र ७. में दिखाया गया है। यह भी अध:प्रवाही चक्र का ही परिष्कृत रूप है। इसकी कोनियानुमा पंखुड़ियों में पानी, चक्र की धुरी के तल से कुछ ऊँचाई पर स्थित पंखुड़ियों में भरना

चित्र:Turbine Model.jpg
मध्यप्रवाही चक्र आरेखचित्र

आरंभ होता है और उनके नीचे आने तक उन्हों में भरा रहता है। चक्र की खोल भी इस पानी को उनमें भरा रखने में कुछ सहायता करती है, अत: यह चक्र मुख्यतया पानी के भार के कारण ही घूमता है। मध्यप्रवाही चक्र भी दो प्रकार के होते हैं। एक तो मध्योच्च प्रवाही (High Breast), जैसा उपर्युक्त वर्णित चित्र में दिखाया गया है और दूसरा अध:मध्यप्रवाही (Low Breast) कहलाता है। इसकी पंखुड़ियों में पानी धुरी के तल से कुछ नीचे की पंखुड़ियों में भरना आरंभ होता है, जिसमें पानी के भार और प्रवाहजनित, दोनों प्रकार की, ऊर्जाओं का उपयोग होता है। इन चक्रों की कार्यक्षमता ५० प्रति शत से लेकर ८० प्रति शत तक हो सकती है, जो इनकी बनावट तथा आकार पर निर्भर करती है। इनका प्रयोग १९वीं शताब्दी के मध्य तक होता रहा, फिर बंद हो गया।

उर्ध्व प्रवाही चक्र

इस प्रकार के चक्र का सैद्धांतिक आरेखचित्र ८ में दिखाया गया है। इसका कार्यक्षमता ७० प्रतिशत से लेकर ८५ प्रतिशत तक पहुँच जाती है, जो आधुनिक जल टर्बाइनों के लगभग समकक्ष ही है यह अपेक्षाकृत आधुनिक प्रकार का गुरुत्वाकर्षणजनित ऊर्जाचालित जलचक्र है, जिसका प्रयोग थोड़ी मात्रा में विद्युच्छक्ति उत्पन्न करने के लिए आजकल भी सहायक मोटर के रूप में होता है तथा अच्छा काम देता है।

आवेगचक्र और टर्बाइन

आधुनिक प्रकार के आवेग चक्र पॉन्सले के अध:प्रवाही चक्र के परिष्कृत रूप हैं। इनमें स्लूस मार्ग (sluice way) के स्थान पर तुड़ों का उपयोग किया जाता है, जिनमें से पानी की प्रधार (jet) बड़े बेग से निकलकर चक्र की पंखुड़ियों से टकराती है। इस ढंग के जिस संयंत्र का सर्वाधिक प्रचार है वह पेल्टन चक्र (Pelton's Wheel) के नाम से प्रसिद्ध है, जिसका सैद्धान्तिक आरेख चित्र ९. क में दिखाया गया है और ९ ख में उसकी एक डोलची (bucket) तथा पानी की धार का आरेख है। डोलची को दो जुड़वाँ प्यालों के रूप में इस प्रकार बना दिया गया है कि पानी की प्रधार उसके मध्य में टकराते ही फटकर, दो भागों में विभक्त होकर , एक दूसरी से लगभग १८० डिग्री के कोणांतर पर चलने लगती है। यदि ये दोनों उपप्रधाराएँ अपनी मूल प्रधारा से बिलकुल विपरीत दिशा में बह निकले तो अवश्य ही पेल्टन चक्र की कार्यक्षमता १०० प्रति शत हो जाय, लेकिन इन्हें जान बूझकर तिरछा करके निकाला जाता है, जिससे ये अपने पासवाली डोलची से टकराएँ नहीं। ऐसा करने से अवश्य ही कुछ ऊर्जा घर्षण में बरबाद हो जाती है, जिससे इस चक्र की कार्य-क्षमता लगभग ८० प्रतिशत ही रह जाती है।

चित्र:Turbine.jpg
आवेगचक्र का आरेख चित्र

गर्गार्ड टर्बाइन

गर्गार्ड टर्बाइन (Girgard Turbine) की खड़ी तथा आड़ी काट क्रमश: चित्र १०. क और ख में दिखाई गई है।

चित्र:Girgard Turbine.jpg
गर्गार्ड टर्बाइन

इसमें प चिह्नित मार्ग से पानी प्रविष्ट होता है, फ टोंटी है और ब चक्र पर लगे पंख (blades) हैं। इन तुंडों में प्रवेश करते समय, बाहर निकलते समय की अपेक्षा, पानी का वेग बहुत अधिक होता है। अत: बाहर की तरफ उनका रास्ता क्रमश: चौड़ा कर दिया जाता है। संयुक्त राज्य, अमरीका में इस टर्बाइन का निर्माण 'विक्टर उच्चदाब टर्बाइन' नाम से किया जाता है, जिसकी कार्यक्षमता ७० प्रतिशत से लेकर ८० प्रतिशत तक, उसके अभिकल्प तथा आकार के अनुसार होती है।

चित्र:Girgard Turbine 1.jpg
प्रतिक्रिया टर्बाइन (Reaction Turbine) -

इसका सिद्धांत भाप टर्बाइन के लेख में समझाया जगया है। आवेगचक्र में



तो पानी की गत्यात्मक ऊर्जा ही काम करती है, लेकिन अभिक्रियात्मक



चक्र में गयात्मक तथा दाबजनित दोनों ही प्रकार की ऊर्जाएँ सम्मिलित रूप से काम करती हैं। पाठकों ने चित्र ११ जैसा बगीचों में पानी छिड़कने का घूमनेवाला फुहारा देखा होगा। स्काँच मिल और वार्कर मिलें इसी सिद्धांत पर बनाई गई थीं, जो आदिम प्रकार की अभिक्रियात्मक टर्बाइनें थी। चित्र में दिखाए गए फुहारे में तो केवल चार ही शाखाएँ हैं, लेकिन उक्त यंत्रों में इतनी अधिक शाखाएँ लगा दी गई कि उनके सम्मेलन से पूरा एक चक्र ही बन गया था।

प्रतिक्रियात्मक टर्बाइनें पानी के प्रवाह के दिशानुसार निम्नलिखित चार मुख्य वर्गों में बाँटी जा सकती हैं : १. त्रैज्य बहिर्प्रवाही, २. त्रैज्य अंत:प्रवाही, ३. अक्षीय प्रवाही और ४. मिश्रप्रवाही।

चित्र:Reaction Turbine 2.jpg

फूर्नेरॉन का टर्बाइन

फूर्नेरॉन (Fourneyron) नामक एक फ्रांसीसी इंजीनियर ने बार्कर मिल के सिद्धांतानुसार केद्रीय


जलमार्ग से बाहर की तरफ त्रैज्य दिशा में बहने के लिए मार्गदर्शक तुंडों को तो स्थिर प्रकार का बनाकर, उनके बाहर की तरफ घूमनेवाला पंखुडीयुक्त चक्र बनाया, जैसा चित्र १२ क. की खड़ी काट और उसी के नीचे १२ ख. चिह्नित प्लान में दिखाया है,

चित्र:Fourneyron.jpg
फूर्नेरॉन

इसमें प केंद्रीय कक्ष है, जिसमें पानी प्रविष्ट होकर त्रैज्य दिशा में फ चिह्नित तुंड में जाकर चक्र की ब चिह्नित पंखों को घुमाता हुआ बाहर निकल जाता है। इसमें घ केंद्रीय धुरा है, जिससे डायनेमो आदि संबंधित रहता है। यह त्रैज्य बहिर्प्रवाही टर्बाइन का नमूना है।

जूवाल (Jouval) का अक्षीय प्रवाहयुक्त टर्बाइन - इसकी खड़ी काट चित्र ९ में दिखाई गई है, जिसके विभिन्न अवयवों के


चित्र १७.

संकेताक्षर पूर्ववर्णित टर्बाइन चित्र जेसे ही हैं। इसमें पानी का प्रवाह, जैसा बाणचिन्हों द्वारा प्रदर्शित किया गया है, अक्ष के समांतर ही रहता है।

फ्रैंसिस का अंत:प्रवाही टर्बाइन

इसकी खड़ी काट चित्र १४ में दिखाई गई है। इसका अभिकल्प जे० बी० फ्रैंसिस नामक सुविख्यात अमरीकन इंजीनियर ने बनाया था। इसमें फ चिह्नित टोंटियों में से पानी बाहर की ओर से त्रैज्य दिशा में प्रविष्ट होकर, भीतर की ओर केंद्र के निकट घूमनेवाले पंखों को ढकेलकर चलाता हुआ, नीचे को धुरी के चारों तरफ होता हुआ, बाहर निकल जाता है। इस चित्र के संकेताक्षर भी पूर्ववर्णित टर्बाइन चित्र १२ और १३ के सदृश ही हैं।

टर्बाइनों के धावन चक्र

टर्बाइनों का घूमनेवाला चक्र (Runner) जिसकी परिधि पर डोलचियाँ अथवा पंख लगे होते हैं, धावक कहलाता है। टर्बाइनों का यही प्रमुख अवयव है जिसकी उत्तम बनावट तथा संतुलन पर उनकी कार्यक्षमता तथा शक्ति निर्भर करती है। दो प्रकार को टर्बाइनें प्राय: अधिक काम आती हैं, एक तो त्रैज्यअंत:प्रवाही प्रतिक्रियात्मक और दूसरी आवेगात्मक। प्रथम प्रकार में से फ्रैंसिस की टर्बाइन का धावनचक्र चित्र १५ में दिखाया गया है, जो १०० से लेकर ५०० फुट तक के वर्चस्‌युक्त जल के उपयुक्त है। आवश्यकता पड़ने पर ६०० फुट वर्चस्‌ के जल का भी इनके साथ उपयोग किया जा सकता है।

चित्र:Runner.jpg
टर्बाइनों के धावन चक्र

आवेगात्मक टर्बाइनों के लिये पेल्टन की दोहरी डोलचियों से युक्त धावनचक्र चित्र १६ में दिखाया गया है, जिसकी डोलचियों की आकृतियाँ दीर्घवृत्तजीय पृष्ठ (ellipsoidal surface) युक्त हैं तथा बाहरी किनारे थोड़े थोड़ कटे हुए हैं। इनमें पानी की प्रधार बिना झटका मारे इन्हें ढकेलकत बिलकुल साफ बाहर निकल जाती है और कटे किनारे के कारण चालू करते समय प्रधार की शक्ति विच्छिन्न नही होने पाती।

चित्र:Turbine 1.jpg
धावनचक्र

मिश्रप्रवाही टर्बाइनों का धावनचक्र चित्र १७ में दिखाया गया है, जो फ्रैंसिस की टर्बाइनों का ही परिष्कृत रूप है। इसका अभिकल्प अल्प वर्चस्‌ के जल से तीव्र गति तथा अधिक शक्ति प्राप्त करने के लिए किया गया है। यंत्रशास्त्र के नियमानुसार तीव्र गति के लिए धावनचक्र का व्यास कम करना पड़ता है, लेकिन ऐसा करने से उसकी शक्ति कम हो जाती है; अत: इस दोष को मिटाने के लिए इसका व्यास कम करके भी चौड़ाई बढ़ा दी गई है और पंखों की संख्या कम करके उन्हें केंद्र के निकट कर दिया गया है। इनका प्रयोग ५ से लेकर १५० फुट वर्चस्‌ तक के पानी के साथ किया जा सकता है।


धावनचक्रों की क्षमता - धावनचक्रों की क्षमता उनकी लाक्षणिक चाल (characteristic speed) द्वारा जाँची जाती है। यदि हम किसी धावनचक्र की विभिन्न नापों को इतना छोटा तथा संकुचित करते जायँ कि वह एक फुट वर्चस्‌ के जल से इतने चक्कर


प्रति मिनट लगाने लगे कि उससे एक अश्वशक्ति मिल जाए तो चक्करों की उस संख्या को उस चक्र की लाक्षणिक चाल कहते हैं, जो निम्नलिखित सूत्र द्वारा व्यक्त की जाती है :

  • इसमें ल (Ns)= लक्षणिक चाल, स (n) = धावन चक्र के चक्कर प्रति मिनट, अ. श. (H.P.) = अश्व शक्ति; व (H) = प्रभावी वर्चस्‌ फुटों में।
  • विभिन्न टर्बाइनों के लिये लाक्षणिक चालों की सीमा निम्न सारणी में दी गई है:
  1. ल टर्बाइनों के प्रकार
  2. १ से ५ आवेगात्मक टर्बाइन - एक टोंटी युक्त
  3. ५ से १० आवेगात्मक टर्बाइन - एक से अधिक टोंटी युक्त
  4. १० से २० प्रतिक्रियात्मक टारबाइन - मंद चाल युक्त
  5. २० से ५० प्रतिक्रियात्मक टारबाइन - मध्यम चाल युक्त
  6. ५० से ८० प्रतिक्रियात्मक टारबाइन - तेज चाल युक्त
  7. ८० से १०० प्रतिक्रियात्मक टारबाइन - बहुत तेज चाल युक्त
  8. १०० से ऊपर प्रतिक्रियात्मक टारबाइन - एक से अधिक धावन चक्र युक्त

धावन चक्र का व्यास

किसी विशेष टरवाइन के लिए धावन चक्र का व्यास क्या होना चाहिए, यह निम्नलिखित सूत्र से निश्चित किया जा सकता है :

व्यास इंचों में

इस सूत्र में ब (H) = वर्चस्‌ फुटों में; स (n) = धावनचक्र की चाल, चक्कर प्रति मिनट में। गुणांक ग (a) का मान उच्च वर्चसयुक्त टर्बाइन के लिए ०.६, मध्यम वर्चस्युक्त टर्बाइन के लिये ०.७ और अल्प वर्चस्‌युक्त टर्बाइन के लिए ०.८ रखा जाता है।


जलचलित मोटरों की बनावट

चित्र ७ और ८ में जिन जलचक्रों के आरेख हैं उनके परिष्कृत रूप अब भी थोड़ी मात्रा में शक्ति उत्पादन करने के लिए देहाती क्षेत्रों में प्रयुक्त होते हैं। इनके एकहरे चक्र का व्यास ६० फुट तक बना दिया जाता है तथा उसकी चौड़ाई इतनी रखी जाती है कि वह ३,००० घन फुट पानी प्रति मिनट से चला सके। ये पर्याप्त मंद गति से चला करते हैं, अत: इन्हें पूरे का पूरा इस्पात की चादरों तथा बेले हुए छड़ों से बनाया जाता है। चक्रों की भीतरी परिधियों पर दाँते बना दिए जाते हैं, जिनसे एक तरफ लगा हुआ छोटा दंतचक्र (चित्र ७ और ८ में द चिह्नित) घूमकर अपने से संबंधित धुरी द्वारा यंत्रों को चलाता है। इनके केंद्रीय मुख्य धुरे से यंत्र प्राय: नहीं चलाए जाते, क्योंकि उनपर मरोड़ बल (twisting force) बहुत अधिक पड़कर उनके छूटने की आशंका उत्पन्न कर देता है।

आवेगचक्र

पेल्टन के जिस आवेगचक्र का आरेख चित्र ९ में तथा जिसका धावन चक्र चित्र १६ में दिखाया गया है, उसके योग्य टोंटी की बनावट चित्र १८ में दिखाई गई है। इसमें लगे एक सूच्याकार वाल्व के स्पिंडल को चौकोर चूड़ियों के द्वारा हाथचकरी से आगे पीछे सरकाकर टोंटी का मुँह कम या ज्यादा खोलकर, पानी की प्रधार को नियंत्रित किया जाता है। इसका परिचालन नियंत्रक यंत्र द्वारा भी किया जा सकता है, जिसका वर्णन आगे किया जाएगा। पेल्टन के आवेगचक्र प्रयोगशाला के छोटे उपकरणों से लेकर १८,००० अश्वशक्ति उत्पादन योग्य कई मापों में बनाए जाते हैं।

प्रतिक्रियात्मक टर्बाइन

इसके धावनचक्र ढले लोहे की खोलों में फिट करके इनके पानी का मार्गदर्शन करने वाले गाइड इस प्रकार की चूलों (pivots) पर लगाए जाते हैं कि उनके तिरछेपन का समायोजन करके टरवाइन की चाल पर भी नियंत्रण


रखा जा सकत है। इनसे धावनचक्र सुविधानुसार आड़े या खड़े दोनों ही प्रकार से यथेच्छा लगाए जा सकते हैं।

गतिनियंत्रक यंत्र

जलचालित मोटरों के लिये एक नियंत्रक यंत्र का आरेख चित्र १९ में दिखाया गया है, जो साधारण वाट के गवर्नर के नमूने पर दो गेंदों से युक्त है। इसे प्रधान चक्र के धुरे पर लगे एक फट्टे द्वारा चलाया जाता है। चक्र की गति तेज होने पर जब केंद्रापसारी बल के कारण गेंदें ऊपर उठती हैं तब उसका स्लीव (sleeve) वीवल गियरों के बीच लगे एक क्लच से संबंधित होकर, चित्र में बाएँ हाथ की तरफ लगे स्पिडल को घुमाकर, उसके सिरे पर लगे एक वर्म क्षरा वर्मकिर्रे को थोड़ा घुमाकर, एक दंतचक्र को थोड़ा सा घुमा देता है, जिससे संबंधित दंतयुक्त दंड (rack) भी सरक जाता है। इसी दंतदंड से संबंधित छेद युक्त एक वाल्व भी थोड़ा सरक कर पानी के मार्ग को आवश्यकतानुसार अवरुद्ध कर देता है। जल चक्र की गति मंद पड़ने पर इसकी क्रिया विपरीत प्रकार की होने से, इससे संबंधित वाल्व पानी के मार्ग, अथवा मुख्य वाल्व, को अधिक मात्रा में खोल देता है। इस प्रकार का बाल्व चित्र ७ में 'न' चिह्नित स्थान पर, चक्र के ऊपर पानी के मार्ग में, लगा हुआ दिखाया गया है।

बड़े टर्बाइनों के लिये तेल के दाब से काम करने वाला नियंत्रक यंत्र चित्र २० में दिखाया गया है। इस चित्र में ऊपर की तरफ, क चिह्नित डिब्बे में केंद्रापसारी प्रकार का भायुक्त गतियंत्रक लगा है। इसके नीचे ही पाइलट वाल्व ख है तो उपर्युक्त नियंत्रक द्वारा संचालित होकर अपने नीचे लगे ग बाल्व को जब खोल देता है, तब दाबयुक्त तेल सिलिडर घ में प्रवेश करके उसमें लगे पिस्टन तथा बाहर की तरफ उसमें जुड़े, कनेकिंटग राँड च को चलाकर पानी के प्रवेशमार्ग को आवश्यकतानुसार कम या ज्यादा खोल देता है। इस उपकरण में नीचे की तरफ एक परिभ्रामी पंप छ लगा है, जो तेल में आवश्यक दाब बनाए रखता है।

वर्चस्‌द्वार

वर्चस्‌द्वार (Head Gate) को खोलने तथा बंद करने की अनेक प्रकार की प्रयुक्तियाँ अभिकल्पित की गई हैं। ये द्वार बहुत ही दृढ़ बनाए जाते हैं, जिन्हें ऊपर नीचे सरकाने के लिये प्राय: दाँतेदार प्रयुक्तियों का ही प्रयोग किया जाता है, जो हाथ तथा शक्ति द्वारा दानों ही प्रकार से संचालित की जा सके। हाथ से चलाए जानेवाले एक द्वार का नमूना चित्र २१ में दिखाया गया है, जिसे चलाने वाले हैंडिल तथा किर्रे और रैक आदि स्पष्ट दिखाई दे रहे हैं।

संयंत्रों का विन्यास

चित्र २२, २३, २४, और २५ में नमूने के लिये चार प्रकार के विन्यास दिखाए गए हैं, जिनमें वर्चसद्वार, जलनालिकाएं (flumes), टर्बाइन डायनेमी और भवन आदि दिखाए गए हैं। चित्र २२ में अन्य वर्चस्‌ के जल के साथ खड़ी टर्बाइन और चित्र २५ में अल्प वर्चस्‌ जल के साथ आड़ी टर्बाइन दिखाई गई है। चित्र २३ में उच्च वर्चस्‌ जल के साथ आड़ी टरवाइन और चित्र २४ में उच्च वर्चस्‌ जल के साथ खड़ी टर्बाइन दिखाई गई है।

जल टर्बाइनों की कार्यक्षमता

किसी भी जल टर्बाइन की सैद्धांन्तिक अश्वशक्ति प्रति मिनट उसपर गिरनेवाले पानी के भार तथा जितनी ऊँचाई से वह गिरता है उसके गुणनफल के अनुपात से जानी जा सकती है। उदाहरणत: यदि स्लूस मार्ग द्वारा प्रति मिनट टर्बाइन पर आनेवाले पानी का आयतन आ (V) घन फुट हो तो उस पानी का भार भ = अ ´ ६२.४ (W = V ´ 62.4) पाउंड होगा। यदि उस पानी का वर्चस्‌ ऊ(h) फुट हो तो उसकी सैद्धांतिक अश्वशक्ति होगी।

चित्र:Plant Arrangement.jpg
संयंत्रों का विन्यास

लेकिन किसी चालक यंत्र की कार्यक्षमता उसकी सैद्धांतिक अश्वशक्ति, और वास्तविक प्रदत्त अश्वशक्ति का अनुपात समझी जाती है। प्रदत्त अश्वशक्ति को रोधन या ब्रेक अश्वाशक्ति (brake horse power, B.H.P.) भी कहते हैं; अत: किसी जल टर्बाइन की कार्यक्षमता

यदि किसी जल टर्बाइन की कार्यक्षमता ८० प्रति शत मान ली जाए तो उसकी रोधक (ब्रेक) अश्वशक्ति।


भाप टर्बाइन

भाप टर्बाइन (Steam Turbine) एक मूलचालक (prime mover) है, जिसमें भाप की उष्मा-ऊर्जा को गतिज उर्जा में परिवर्तित कर, उच्च गतिशील भाप को एक घूर्णक (rotor) पर बँधे हुए बहुत से फलकों पर टकराया जाता है, जिससे फलक परिभ्रमण करते हैं एवं इससे कार्य होता है। अन्योन्यगतिक (reciprocating) भाप इंजन में भाप की स्थैतिक (statical) दाब द्वारा पिस्टन पर कार्य किया जाता है। यद्यपि इंजन में भाप पिस्टन के साथ चलती है, फिर भी इंजन की क्रिया में भाप की गतिज उर्जा का प्रभाव नगणय है। भाप टर्बाइन में भाप इंजन की अपेक्षा उच्चतर गति मिल सकती है और गतिसीमा भी बड़ी हा सकती है। टर्बाइन के पुर्जों का संतुलन अच्छा रहता है। भाप की समान मात्रा एवं समान अवस्था में भाप टर्बाइन भाप इंजन से अधिक शक्ति पैदा कर सकता है। भाप इंजन से कुछ वर्ष काम लेने के बाद भाप की खपत बढ़ जाती है, परंतु टर्बाइन में ऐसी अवस्था नहीं आती पृथ्वी पर के सभी मूल चालकों में भाप टर्बाइन सबसे अधिक टिकाऊ होता है। टर्बाइन से सबसे बड़ा लाभ यह होता है कि इससे घूर्णक गति सीधे प्राप्त होती है, जबकि भाप इंजन में अन्योन्यगति से घूर्णक गति प्राप्त करने के लिए अलग से उपादान का व्यवहर करना पड़ता है।

वाष्पित्र में भाप का जनन उच्च दाब एवं अधिताप (superheat temperature) पर होता है। जब यह भाप टर्बाइन के पास पहुँचती है, उस समय इसमें अधिक मात्रा में उष्मा ऊर्जा होती है और इसकी दाब भी इतनी अधिक होती है कि यह निम्नदाब तक प्रसारित हो सकती है। परंतु उस समय इसकी गतिज उर्जा नगण्य होती है। अत: भाप कुछ कार्य कर सके इसके पहले इसकी उष्मा ऊर्जा को गतिज उर्जा में परिवर्तित किया जाता है। यह परिवर्तन, अच्छी तरह अभिकल्पित उपकरण में, भाप को विस्तारित करने से होता है। भाप का प्रसार या तो एक ही क्रिया में पूर्ण किया जाता है, या विभिन्न क्रियाओं में। इसका अर्थ यह होता है कि उष्मा ऊर्जा को गतिज ऊर्जा में परिवर्तित करने के लिए बहुत से स्थिर उपकरण व्यवहार में लाए जाते हैं और प्राय: दो स्थिर उपकरणों के बीच एक गतिमान उपकरण लगा रहता है। स्थिर उपकरण में प्राप्त गतिज ऊर्जा को उसके बाद बँधे हुए गतिमान उपकरण के ऊपर कार्य करने के लिये लगाया जाता है।

संक्षिप्त इतिहास

विश्व का सर्वप्रथम घूर्णन इंजन सन्‌ ५० ई. में ऐलेक्जैंड्रिया के हीरो ने बनाया था। इसमें दो कीलकों (pivots) के बीच एक खोखली गेंद लगी थी। टर्बाइन के निचले भाग में भाप बनाने के लिए बरतन रखा हुआ था, जिससे भाप उस गेंद में प्रवेश कर सकती थी। वहाँ से भाप गेंद में लगी हुई दो त्रैज्य (radial) नलिकाओं द्वारा बाहर आती थी इसी के कारण गेंद घूमती रहती थी। यह टर्बाइन बहुत ही साधारण था। हीरो के टर्बाइन के आधार पर बहुत से वैज्ञानिकों ने इसके विकास के लिए अन्वेषण किए। तब से विभिन्न अभिकल्प के टर्बाइन बनाए गए, किंतु वे सभी नमूने के रूप में ही रहे। उन टर्बाइनों को व्यवहार में लाना लाभदायक नहीं समझा गया। सर्वप्रथम सफल टर्बाइन गियोवन्नी ्व्राांका ने १६२९ ई. में बनाया था। यह पहला आवेग टर्बाइन था।

प्रकार

टर्बाइन के प्रकार - भाप टर्बाइन मुख्यत: दो प्रकार के होते हैं:

आवेग टर्बाइन

आवेग (impulse) टर्बाइन में सिर्फ तुंड (nozzle) में भाप प्रसारित होती है। गतिमान फलकों से होकर गुजरने में भाप की दाब में कुछ भी परिवर्तन नहीं होता, अर्थात्‌ फलकों के प्रवेश और निकास सिरे पर भाप की दाब समान ही रहती है। भाप, गतिमान फलकों की कई पंक्तियों से होकर, प्रवाहित होती है और इस प्रवाह में गतिज ऊर्जा का परिवर्तन उपयोगी कार्य के रूप में होता है। इस तरह के टर्बाइनों में प्रथम सफल टर्बाइन डी लाबाल (De laval) का टर्बाइन था यह एक आवेगचक्र है, जिसके ऊपर परिधि पर लगे हुए तुंडों से भाप निकलकर टकराती है। भाप तुंड में पूर्णत: विस्तारित होती है। ये तुंड चक्र की स्पर्शरेखा से १५० से २०० तक के कोण पर झुके रहते हैं। सबसे छोटा डी लावाल टर्बाइन ५ इंच व्यासवाले चक्र का बनाया गया था और यह ३०,००० परिक्रमण प्रति मिनट पर चलाया गया था। यह निम्न दाब भाप के लिए उपयुक्त है। इस तरह के टर्बाइन के फलकों के प्रवेश एवं निकास कोण समान होते हैं।

आवेग प्रतिक्रया टर्बाइन

आवेग प्रतिक्रया टर्बाइन (Impulse-Reaction Turbine) में भाप का पूर्ण रूप से प्रसार एक क्रिया में नहीं होता। प्रथम स्थिर पंक्ति से निकलकर भाप गतिमान फलक पर टकराती है। जैसे जैसे भाप फलकों से होकर प्रवाहित होती है, वैसे वैसे इसका प्रसार होता जाता है। अत: इस तरह के टर्बाइन में फलक तुंड का भी काम करता है। गतिमान फलकों द्वारा भाप के प्रसारित किए जाने पर भाप की गतिज उर्जा में कुछ वृद्धि हो जाती है। इस तरह इसके फलक कार्य करने के साथ ही साथ भाप का प्रसार भी करते हैं। इन फलकों को साथ ही साथ प्रेरित एवं प्रतिक्रिया बलों का सामना करना पड़ता है। इसी लिए इस तरह के टर्बाइन को 'आवेग प्रतिक्रया टर्बाइन' कहते हैं। वस्तुत: यह नामकरण अशुद्ध है, क्योंकि केवल शुद्ध प्रतिक्रिया टर्बाइन नाम का कोई भी टर्बाइन नहीं होता। इस तरह के टर्बाइन के दो मुख्य उदाहरण हैं:-

पारसन का टर्बाइन -

१८८४ ई. में पारसन ने प्रथम आवेग प्रतिक्रया टर्बाइन बनाया था। इसमें भाप, टर्बाइन चक्र के अक्ष के समानांतर दिशा में फलकों से होकर, प्रवाहित होती है। इस तरह के टर्बाइन को अक्षप्रवाह टर्बाइन (Axial Flow Turbine) भी कहते हैं। पारसन टर्बाइन में स्थित और गतिमान फलक सर्वसम बनाए जाते हैं।

लजुंग्सट्रोम (Ljungstrom)टर्बाइन -

इस टर्बाइन में फलक त्रैज्य दिशा में लगे रहते हैं, जिससे भाप चक्र के अक्ष के निकट फलक के सिरे पर प्रवेश करती है और परिधि की ओर प्रवाहित होती है। इसके कारण इस टर्बाइन में प्रवाह त्रैज्य होता है। इसके सिवाय इसमें एक महत्वपूर्ण अंतर यह है कि दोनों तरह के फलक विपरीत दिशाओं में चलते हैं, जिससे उच्च आपेक्षिक वेग प्राप्त होता है।

भाप टर्बाइन के यांत्रिक लक्षण

साधारणत: भाप टर्बाइन में अग्रलिखित पुर्जे लगे रहते हैं: (१) टोंटी, जिसमें भाप उच्च दाब से निम्न दाब पर प्रसारित होकर उच्च गति प्राप्त करती है; (२) गतिमान फलक, जिसके ऊपर टोंटी या स्थिर फलक से निकली हुई भाप टकराती है एवं इससे कार्य होता है; (३) स्थिर फलक, जो भाप का निकास किसी खास कोण पर करके अगले गतिमान फलक की और भेजता है; (४) घूर्णक, जिसके ऊपर गतिमान फलकों की पंक्तियाँ ब्धाीं रहती हैं। घूर्णक को फलकों के ऊपर एवं स्वयं अपने ऊपर पड़नेवाले अपकेंद्रित वालों का सामना करना पड़ता है; (५) नम्य ईषा

श्

१. टोंटी, २, ४ और ६. गतिमान फलक; ३, ५ और १०. स्थिर फलक; ७. ईषा; ८. चक्र; ९. वाष्पित्र में प्रवेश क. भाप पेटी दाब; ख. प्रवेश भाप गति; ग. निकास भाप गति तथा घ. संघनक दाब।

(flexible shaft) जो घूर्णक को सहारा देती है और टर्बाइन में उत्पन्न शक्ति को संचारित करती है; (६) बेयरिंग (bearing), जो ईषा को सहारा देता है; (७) गियर, (gear) जो घूर्णक की उच्चगति को व्यवहार में लाने लायक गति में परिवर्तित करता है, (८) आवरण (casing), जिसके ऊपर स्थिर फलकों की पंक्तियाँ बँधी रहती हैं। गतिमान फलकों सहित परिभ्रमक को यह ढके रहता है, जिसस भाप बीच में ही बाहर न निकल जाय।

टर्बाइन फलक

भाप टर्बाइन में सबसे मुख्य इसके फलक हैं। इस यंत्र के अन्य पुर्जे इन्हीं फलकों के उपयोग के लिए रहते हैं। बिना फलक के शक्ति प्राप्त नहीं हो सकती एवं फलकों में जरा सा भी दोष रहने से टर्बाइन की दक्षता में कमी आ जाती है। इसके निर्माण के लिए ऐसे द्रव्यों की आवश्यकता होती है जो उच्चताप के साथ ही उच्च प्रतिबल का भी सामना कर सकें। आधुनिक उच्च ताप और उच्च प्रतिबलवाले टर्बाइनों के फलकों के लिये अलौह वर्ग के द्रव्यों का व्यवहार नहीं किया जा सकता, क्योंकि ताप के साथ इनकी तनाव क्षमता में भी कमी आ जाती है। आजकल इसके लिये अविकारी इस्पात के विकास की ओर वैज्ञानिकों का ध्यान केंद्रित है। आदर्श फलक वही है जो उच्चतम दक्षता का होते हुए एक समान प्रतिबलित (stressed) हो। इस तरह की अवस्था खोखले फलकों द्वारा प्राप्त की जा सकती है। इसके सिवाय खोखले फलक परिभ्रमक पर तीव्र प्रतिबल नहीं डालते। इससे उच्च गति की प्राप्ति होती है, तथा अधिक शक्ति की प्राप्ति हो सकती है। टर्बाइन में प्रवण फलकों का भी व्यवहार किया जाता है, जिससे इसके ऊपर कम प्रतिबल पड़े।

परिभ्रमक

गति को कम करने के तरीके -

सभी भाप टर्बाइनों में फलकगति भापगति की अनुपाती होती है। यदि भाप को वाष्पित्र दाब से संघनक दाब तक एक ही चरण में प्रसारित किया जाय, तो प्रसार के अंत में भापगति अत्यधिक हो जाएगी। यदि इस उच्च गति भाप का एक फलकपंक्ति में व्यवहार किया जाय, तो इससे परिभ्रमक गति अत्यधिक (उदाहरणत : ३०,००० परिक्रमा प्रति मिनट) मिलेगी, जो व्यावहारिक कार्यों के लिए अत्यंत अधिक है। परिभ्रमक की इस उच्च गति को कम करने के लिए बहुत सी प्रणालियाँ खोजी गर्ह हैं। इन सभी प्रणालियों में कई फलकपंक्तियों का उपयोग किया जाता है। इसके लिए एक ही ईषा पर बहुत से परिभ्रमक एक क्रम चाभी की सहायता से बँधे रहते हैं। जैसे जैसे गतिमान्‌ फलकपंक्तियों द्वारा भाप प्रवाहित होती है, भापदाब (या भापगति) उन चरणों में अवशोषित हो जाती है। इस क्रिया को 'संयोजन' (compounding) कहते हैं। परिभ्रमक गति को कम करने के मुख्य तरीके ये हैं:

वेगसंयोजन -

स्थिर फलकों की पंक्तियों द्वारा पृथक की हुई, गतिमान फलकों की पंक्तियाँ टर्बाइन ईष पर बँधी रहती हैं। भाप, वाष्पित्र दाब से संघनक दाब तक टोंटी में प्रसारित होकर, उच्च गति प्राप्त करती है। इसके बाद उच्च-गति-भाप गतिमान फलकों की प्रथम पंक्ति द्वारा प्रवाहित होती है, जिसमें इसकी गति का कुछ भाग अवशोषित होता है और बाकी स्थिर फलकों की अगली पंक्ति में प्रवेश करता है। ये स्थिर फलक गति को बिना परिवर्तित किए भाप की दिशा को बदल देते हैं। तब भाप गतिमान्‌ फलक की दूसरी पंक्ति में प्रवेश करती है। भाप की गति का कुछ और भाग इस दूसरी गतिमान्‌ पंक्ति में अवशोषित होता है। ज्यों ज्यों भाप आगे की फलकपंक्तियों द्वारा प्रवाहित होती है, इस क्रम की पुनरावृत्ति होती रहती है। इस तरह अंत में भाप की संपूर्ण गतिज उर्जा अवशोषित हो जाती है (देखें चित्र २६)।

दाबसंयोजन -

इसमें गतिमान्‌ फलकों की पंक्तियाँ, जिनमें प्रत्येक के बाद स्थिर टोंटी की एक पंक्ति होती है, क्रम में टर्बाइन ईषा पर चाभी द्वारा लगी रहती है। इसमें भाप का पूर्ण दाबपात (pressure drop) केबल टोंटी की प्रथम पंक्ति में ही नहीं होता, बल्कि टोंटी की सभी पंक्तियों में समान रूप से बँटा रहता है। वाष्पित्र से भाप टोंटी की प्रथम पंक्ति में प्रवेश करती है, जिसमें यह अंशत: प्रसारित होती है। तत्पश्चात्‌ यह प्रथम गतिमान्‌ फलकपंक्ति द्वारा प्रवाहित होती है, जहाँ इसकी प्राय: संपूर्ण गतिज ऊर्जा अवशोषित हो जाती है। इस पंक्ति से निकलकर यह टोंटी की दूसरी पंक्ति में प्रवेश करती है, जहाँ यह पुन: अंशत: प्रसारित होती है। इससे दाब में फिर कुछ कमी हो जाती है। टोटी की दूसरी पंक्ति द्वारा प्राप्त गतिज ऊर्जा अगली

श्

श्

श्

चित्र २७. दाबसंयोजन

१. भाप का वाष्पित्र में प्रवेश; २. निष्कासन, ३. अनुपट (diaphragm); ४. चक्र; ५. ईषा; ६. टोंटी; ७. और ९. गतिमान फलक तथा ८. स्थिर फलक। क. भाप पेटी दाब; ख. प्रवेश भाप गति; ग. निकाश भाप गति तथा घ. संघनक दाब

गतिमान फलकपंक्ति में अवशोषित होती है। यह क्रिया तब तक चलती रहती है, जब तक संपूर्ण दाबपात टर्बाइन में अवशोषित न हो जाए। दाब संयोजन का यह तरीका राट्यू (Rateau) एवं जोयली टर्बाइन में व्यवहार में लाया जाता है (देखें चित्र २७)।

दाब-वेग-संयोजन -

इस तरह के टर्बाइन में उपर्युक्त दोनों तरीकों का उपयोग होता है। भाप का पूर्ण दाबपात सभी चरणों में विभक्त किया जात है और प्रत्येक चरण में प्राप्त गति को भी संयोजित कर दिया जाता है। इससे यह लाभ होता है कि प्रत्येक चरणा में उच्च दाबपात की प्राप्ति होती है, जिसके फलस्वरूप कम चरणों की आवश्यकता पड़ती है। इसीलिए इस तरह के टर्बाइन का आकार छोटा होता है। कर्टिस टर्बाइन इसी तरह का है (देखें चित्र २८)

वेग आरेख (diagram) - टर्बाइन के गतिमान्‌ फलक के प्रवेश एवं निकास सिरे पर भाप की विभिन्न गतियों को वेग आरेख

चित्र २८. दाब वेग संयोजन

१. भाप का वाष्पित्र में प्रवेश; २. भाप का निष्कासन; ३. टोंटी; ४. टोंटी नियंत्रक वाल्व; ५. स्थिर टोंटी तथा ६. और ८. गतिमान एवं स्थिर फलक (क्रमश:)। क. भाप पेटी दाब; ख. प्रवेश भाप गति; ग. निकास भाप गति तथा घ. संघनक दाव।

द्वारा प्रदर्शित किया जाता है। (देखें चित्र २९) इस चित्र में अ व स फलक के प्रवेश सिरे पर का वेग आरेख है, जिसमें ब स भाप का परम प्रवेशवेग (absolute inlet-velocity), अ ब फलकवेग एवं अ स भाप का आपेक्षिक प्रवेशवेग है। अ ब द फलक के निकास सिरे पर का वेग आरेख है। इसमें अ ब फलकवेग, अ द भाप का निकास आपेक्षिक वेग एवं ब द भाप का परम निकास वेग है। द विंदु से द य एवं स विंदु से स फ, अ ब से बढ़े हुए भागों पर लंब खींचे गए हैं। स फ ओर द य क्रमश: भाप का प्रवेश एवं निकास अक्षवेग व फ और व य कमश: भाप की स्पर्शीय (tangential) प्रवेश एवं निकास गतियाँ हैं। कोण अ ब स से टोंटी कोण है। कोण फ अ स और कोण ब अ द क्रमश: फलक के प्रवेश एवं निकास कोण हैं।

भाप टर्बाइन में हानियाँ

एक आदर्श टर्बाइन में भाप द्वारा किया गया कार्य रैंकिन कार्य (Rankine) के बराबर होता है, अर्थात्‌ यह रुद्धोष्म उष्मापात (adiabatic heat drop) के तुल्य होगा। व्यवहार में होनेवाली अनेक हानियों द्वारा यह कार्य अत्यंत कम हो जाता है। प्रथम हानि वेगनियंत्रक वाल्व में होती है, जहाँ भाप की दाब अवरोध (throttling) द्वारा ५ से लेकर १० प्रतिशत तक कम हो जाती है। उच्च-दाब-टोंटी-पेटी में घर्षण एवं भँवर (friction and eddies) द्वारा भाप की दाब में फिर कुछ कमी हो जाती है, किंतु सबसे अधिक हानि टोंटी में होती हैं। उष्मीय दक्षता के लिये छोटे छोटे फलक उपयुक्त नहीं होते, किंतु यदि फलक की ऊँचाई बढ़ाई जाए तो उच्चदाब भाप, भाप की अधिक घतना और परिमित मात्रा के कारण, प्रथम चरण की संपूर्ण परिधि को ढक नहीं पाती है, जिससे आंशिक प्रवेशहानि होती है। इसका परिणाम यह होता है कि जो फलक भाप के जेट के प्रभाव के अंदर नहीं होते, वे आवरण में भरी हुई भाप का मंथन करते रहते हैं। इसके करण पंखा या वाति हानि होती है। उच्चदाब टर्बाइन का परिभ्रमक भी स्वयं घने माध्यम में चलता है, जिसमें इसे अत्यंत तरल अवरोध का सामना करना पड़ता है एवं इसके कारण चकती - घर्षण-हानि (disc friction loss) होती है। टर्बाइन में विभिन्न चरणों द्वारा प्रवाहित भाप की इन हानियों का हमेशा सामना करना पड़ता है। ज्यों-ज्यों भाप की घनता में कमी होती जाती है, त्यों त्यों ये हानियाँ भी कम होती जाती हैं। इनके अलावा विकिरण हानि तो होती ही है। वेयरिंग में घर्षण द्वारा भी हानियाँ होती हैं। टर्बाइन में कार्य करने के बाद भाप संघनक में प्रवेश करती है एवं इस समय भी इसमें कुछ वेग होता है। इस गतिज ऊर्जा की हानि को अंतिम या अवशिष्ट हानि (terminal or leaving loss) कहते हैं।

भरण तापन की पुनर्जननीय प्रणाली (Regenerative system of feed heating) - टर्बाइन संयंत्र की दक्षता को बढ़ाने के लिए इस प्रणाली का व्यवहार किया जाता है (चित्र ३०)। इसमें भाप अ, ब और स तीन बिंदुओं से टर्बाइन से निकालकर तीन तापकों में भेजी जाती है। अंतिम तापक से निकलकर भाप आर्द्रावस्था में जलाशय में प्रवेश करती है, जहाँ से होकर

चित्र २९. वेग आरेख

भरणजल प्रवाहित होता है। चूँकि भरणजल भाप से अधिक ठंड़ा रहता है, अत: यह भाप से गर्मी लेकर स्वयं गरम हो जाता है। भरणजल एक तापक से दूसरे में, फिर दूसरे से तीसरे में जाता है। अंतिम तापक से निकलकर भरणजल अत्यंत गरम हो जाता है, जिससे वाष्पित्र में ताप की बचत होती है। इसके कारण टर्बाइन संयंत्र की दक्षता बढ़ जाती है।

भाप का पुन: तापन

टर्बाइन में प्रसारित होते समय भाप प्रथम कुछ चरणों के बाद आर्द्र हो जाती है। आर्द्र भाप में रहनेवाले जलकण फलकों पर आघात करते हैं, जिससे फलक की आयु कम हो जाती है। अत: फलक संक्षरण को हटाने

चित्र ३०. भरण तापन की पुनर्जनन प्रणाली

१. टर्बाइन; २. संघनक; ३. जलाशय तथा ४. वाष्पित्र।

भाप की घर्षण हानि को कम करने एवं टर्बाइन की उष्मीय क्षमता को बढ़ाने के लिये भाप को आर्द्र होते ही टर्बाइन से निकाल लिया जाता है। इसके बाद यह पुन:तापक (reheater) में प्रवेश करती है, जहाँ यह फिर से ताप प्रहण करके

चित्र ३१. भाप का पुन: तापन

१. टर्बाइन; २. पुन:तापक; ३. वाष्पित्र; ४. निकासनली; ५. जलाशय; ६. और ७ पंप तथा ८. संघनक।

अधितप्त हो जाती है और तब यह टर्बाइन के अगले चरण में लौट जाती है। पुन: तापन के लिये भाप अभिकल्प के अनुसार, टर्बाइन के एक या अधिक स्थानों से बाहर निकाली जाती है (देखें चित्र ३१)।

  • टर्बाइन के विशेष रूप - ये निम्नलिखित हैं -
निष्कर्षण टर्बाइन (Extraction Turbine) -

बहुत से उद्योगों में शक्ति के साथ ही साथ उष्मा की भी माँग होती है, जो विधायन (processing) कार्य के लिये आवश्यक होती है। चूँकि ३०० पाउंड प्रति वर्ग इंच पर संतृप्त भाप की पूर्ण उष्मा ३० पाउंड प्रति वर्ग इंच पर की पूर्ण उष्मा से चार प्रतिशत ही अधिक होती है, अत: उच्चदाब की भाप का जनन उष्मागतिकी (thermodynamics) के अनुसार अधिक लाभप्रद होगा। निष्कर्षण टर्बाइन में इस भाप को पहले कार्य करने के लिए प्रसारित किया जाता है एवं माँग के अनुसार भाप की कुछ मात्रा को निम्न दाब पर विधायन कार्य के लिए बाहर निकाल लिया जाता है। शेष बची भाग को टर्बाइन में संघनक दाब तक प्रसारित किया जाता है। इस तरह के टर्बाइन को निष्कर्षण टर्बाइन कहते हैं एवं इस टर्बाइन के दो भाग, उच्चदाब भाग और निम्नदाब भाग, होते हैं।

पश्चदाब टर्बाइन (Back Pressure Turbine) -

यह टर्बाइन निष्कर्षण टर्बाइन का ही एक रूप है। इसमें विधायन कार्य के लिए संपूर्ण भाप को बाहर निकाल लिया जाता है। इससे भाप सिर्फ उच्चदाब भाग में ही प्रसारित होती है।

निम्नदाब टर्बाइन - निम्नदाब टर्बाइन वह टर्बाइन है जिसमें भाप कार्य करने के लिये निम्न दाब पर प्रवेश करती है और निम्नतम दाब तक प्रसारित होती है। यदि निम्नदाब भाप लगातार मिलती रहे (उदाहरणार्थ, भाप इंजन निकास द्वारा) तो एक निम्नदाब टर्बाइन का प्रयोग करके समूचे संयंत्र की क्षमता बढ़ाई जा सकती है। उष्मागतिकी के सिद्धांत के अनुसार समान दाबसीमा पर कार्य करनेवाले निम्नदाब टर्बाइन में निम्नदाब इंजन की अपेक्षा अधिक कार्य प्राप्त होता है। यदि भाप का प्रदाय लगातार न हो तो उष्मासंचायक का व्यवहार किया जाता है।

'मिश्रित दाब टर्बाइन - ऊपर बताए गए उष्मासंचायक की क्षमता भी सीमित होती है। जब निम्नदाब भाप की मात्रा माँग से बहुत कम हो जाती है, तब इस कमी को पूरा करने के लिए वाष्पित्र से भाप की दाब को कम करके टर्बाइन में भेजा जाता है। इस तरह उच्चदाब और निम्नदाब पर आनेवालनी भाप के दो प्रदाय एक ही टर्बाइन में आते हैं। इस तरह के टर्बाइन को मिश्रितदाब टर्बाइन कहते हैं। इस टर्बाइन में भाप इंजन द्वारा निम्नदाबभाप-निकास, या उष्मासंचायक, का व्यवहार किया जाता है।



टीका टिप्पणी और संदर्भ