"वक्र": अवतरणों में अंतर

अद्‌भुत भारत की खोज
नेविगेशन पर जाएँ खोज पर जाएँ
[अनिरीक्षित अवतरण][अनिरीक्षित अवतरण]
('{{लेख सूचना |पुस्तक नाम=हिन्दी विश्वकोश खण्ड 10 |पृष्ठ ...' के साथ नया पन्ना बनाया)
 
No edit summary
पंक्ति २९: पंक्ति २९:
कोई बीजीय वक्र कहीं पर टूट नहीं सकता, या असंतत नहीं हो सकता। उसकी स्पर्श रेखाओं (tangents) की दिशाओं में अचानक ही परिवर्तन नहीं हो सकता। उसका कोई भी भाग एक सीधी रेखा नहीं हो सकता। इस प्रकार किसी बीजीय वक्र का यह एक सामान्य लक्षण है कि उसको बनानेवाले बिंदु की विभिन्न स्थितियाँ क्रमिक और संतत होती हैं और इन बिंदुओं पर खींची गई स्पर्श रेखाओं की दिशा में परिवर्तन भी क्रमिक और संतत होता है।
कोई बीजीय वक्र कहीं पर टूट नहीं सकता, या असंतत नहीं हो सकता। उसकी स्पर्श रेखाओं (tangents) की दिशाओं में अचानक ही परिवर्तन नहीं हो सकता। उसका कोई भी भाग एक सीधी रेखा नहीं हो सकता। इस प्रकार किसी बीजीय वक्र का यह एक सामान्य लक्षण है कि उसको बनानेवाले बिंदु की विभिन्न स्थितियाँ क्रमिक और संतत होती हैं और इन बिंदुओं पर खींची गई स्पर्श रेखाओं की दिशा में परिवर्तन भी क्रमिक और संतत होता है।


किसी बिंदु पर वक्र की वक्रता उस बिंदु पर वक्र की दिशा में परिवर्तन की मात्रा होती है|यदि चित्र 1. में ब (P) पर वक्र की  
किसी बिंदु पर वक्र की वक्रता उस बिंदु पर वक्र की दिशा में परिवर्तन की मात्रा होती है। यदि चित्र 1. में ब (P) पर वक्र की  
[[चित्र:Curve1.jpg|center|300px|चित्र 1|thumb]]
[[चित्र:Curve1.jpg|center|300px|चित्र 1|thumb]]


पंक्ति ४६: पंक्ति ४६:
(''Singular point'') कहलाता है। दूसरे शब्दों में ऐसे बिंदु के समीप कोई विचित्रता, या विशेषता अवश्य होती है। यदि बिंदु पर वक्र उत्तल से अवतल, या इसका उल्टा, हो रहा हो, अर्थात्‌ ऐसे बिंदु पर वक्र का कुछ भाग स्पर्श रेखा के एक ओर तथा कुछ भाग दूसरी ओर हो (चित्र 3.), तो बिंदु से वक्र की एक से अधिक शाखाएँ गुजरती हों, तो बिंदु को बहुल बिंदु (''Multiple point'') कहते हैं और यदि वक्र की दो शाखाएँ गुजरती हैं, तो इसे द्विक्‌ (''double'') बिंदु, तीन शाखा गुजरती हैं तो त्रिक्‌ (triple) बिंदु (चित्र 4.), इत्यादि कहा जाता है। यदि किसी ऐसे बिंदु पर स्पर्श रेखाएँ वास्तविक और अलग अलग हों, तो बिंदु को नोड (Node) कहते हैं (चित्र 5.) और यदि अलग अलग न हों, तो बिंदु कों कस्प (''Cusp'') कहते हैं|
(''Singular point'') कहलाता है। दूसरे शब्दों में ऐसे बिंदु के समीप कोई विचित्रता, या विशेषता अवश्य होती है। यदि बिंदु पर वक्र उत्तल से अवतल, या इसका उल्टा, हो रहा हो, अर्थात्‌ ऐसे बिंदु पर वक्र का कुछ भाग स्पर्श रेखा के एक ओर तथा कुछ भाग दूसरी ओर हो (चित्र 3.), तो बिंदु से वक्र की एक से अधिक शाखाएँ गुजरती हों, तो बिंदु को बहुल बिंदु (''Multiple point'') कहते हैं और यदि वक्र की दो शाखाएँ गुजरती हैं, तो इसे द्विक्‌ (''double'') बिंदु, तीन शाखा गुजरती हैं तो त्रिक्‌ (triple) बिंदु (चित्र 4.), इत्यादि कहा जाता है। यदि किसी ऐसे बिंदु पर स्पर्श रेखाएँ वास्तविक और अलग अलग हों, तो बिंदु को नोड (Node) कहते हैं (चित्र 5.) और यदि अलग अलग न हों, तो बिंदु कों कस्प (''Cusp'') कहते हैं|
[[चित्र:Curve3.jpg|left|300px|चित्र 3|thumb]]
[[चित्र:Curve3.jpg|left|300px|चित्र 3|thumb]]
[[चित्र:Curve5 (2).jpg|right|250|pxचित्र 4|thumb]]
[[चित्र:Curve5 (2).jpg|right|250px|चित्र 4|thumb]]
न (n) घात के किसी वक्र के द्विक्‌ बिंदुओं आदि की अधिकतम संख्या 1/2 (न-1) (न-2) [[चित्र:Curve7.gif|150px]] हो सकती हैं। वक्र में किसी बिंदु से खींची जा सकनेवाली स्पर्श रेखाओं की  
न (n) घात के किसी वक्र के द्विक्‌ बिंदुओं आदि की अधिकतम संख्या 1/2 (न-1) (न-2) [[चित्र:Curve7.gif|150px]] हो सकती हैं। वक्र में किसी बिंदु से खींची जा सकनेवाली स्पर्श रेखाओं की  
[[चित्र:Curve5 (1).jpg|left|200|चित्र 5|thumb]]
[[चित्र:Curve5 (1).jpg|left|200|चित्र 5|thumb]]

०६:३०, १५ जून २०१५ का अवतरण

लेख सूचना
वक्र
पुस्तक नाम हिन्दी विश्वकोश खण्ड 10
पृष्ठ संख्या 371-373
भाषा हिन्दी देवनागरी
संपादक रामप्रसाद त्रिपाठी
प्रकाशक नागरी प्रचारणी सभा वाराणसी
मुद्रक नागरी मुद्रण वाराणसी
संस्करण सन्‌ 1975 ईसवी
उपलब्ध भारतडिस्कवरी पुस्तकालय
कॉपीराइट सूचना नागरी प्रचारणी सभा वाराणसी
लेख संपादक झम्मन लाल शर्मा

वक्र (Curve) बोलचाल की भाषा में कोई भी टेढ़ी मेढ़ी रेखा वक्र कहलाती है। गणित में सामान्यतया, वक्र ऐसी रेखा है जिसके प्रत्येक बिंदु पर उसकी दिशा में किसी विशेष नियम से ही परिवर्तन होता हो। यह ऐसे बिंदु का पथ है जो किसी विशेष नियम से ही विचरण करता हो। उदाहरण के लिए, यदि किसी बिंदु की दूरी एक नियत बिंदु से सदा समान रहती हो, तो बिंदुपथ एक वक्र होता है जिसे वृत्त कहते हैं। नियत बिंदु इस वृत्त का केंद्र होता है। यदि वक्र के समस्त बिंदु एक समतल में हो तो उसे समतल वक्र (Plane curve) कहते हैं, अन्यथा उसे विषमतलीय (Skew) या आकाशीय (Space) वक्र कहा जाता है। आगे वक्र से हमारा तात्पर्य समतल वक्र होगा।

प्रत्येक वक्र दो चरों के केवल एक समीकरण द्वारा व्यक्त किया जा सकता है। यदि किस वक्र के कार्तीय (Cartesian), या प्रक्षेपीय निर्देशांकों का केवल एक स्वतंत्र चर, या प्राचल (parameter), के बीजीय फलनों के रूप में लिखा जा सके, तो वक्र को बीजीय वक्र कहते हैं। इस वक्र के समीकरण में केवल बीजीय फलन ही आते हैं। यदि समीकरण में अबीजीय (transcendental) फलन आते हैं, तो वक्र अबीजीय वक्र कहलाता है। विभिन्न शांकव बीजीय वक्रों के और चक्रज (cycloid), कैटिनरी (catenary) आदि, अबीजीय वक्रों के उदाहरण हैं। वक्र प्रथम, द्वितीय, तृतीय, कोटि के कहे जाते हैं, यदि उनके समीकरणों में य (x), या र (y) के प्रथम, द्वितीय, तृतीय, घात आते हों। वृत्त, दीर्घवृत्त (ellipse) परवलय (parabola), अतिपरवलय (hyperbola) द्वितीय कोटि के वक्रों के उदाहरण हैं। वक्र किसी बिंदु पर असंतत भी हो सकता है। संतत वक्रों पर विचार करते समय उन्हें बिंदुओं की एक एकल अनंती के रूप में भी लिया जा सकता है।

कोई बीजीय वक्र कहीं पर टूट नहीं सकता, या असंतत नहीं हो सकता। उसकी स्पर्श रेखाओं (tangents) की दिशाओं में अचानक ही परिवर्तन नहीं हो सकता। उसका कोई भी भाग एक सीधी रेखा नहीं हो सकता। इस प्रकार किसी बीजीय वक्र का यह एक सामान्य लक्षण है कि उसको बनानेवाले बिंदु की विभिन्न स्थितियाँ क्रमिक और संतत होती हैं और इन बिंदुओं पर खींची गई स्पर्श रेखाओं की दिशा में परिवर्तन भी क्रमिक और संतत होता है।

किसी बिंदु पर वक्र की वक्रता उस बिंदु पर वक्र की दिशा में परिवर्तन की मात्रा होती है। यदि चित्र 1. में ब (P) पर वक्र की

चित्र:Curve1.jpg
चित्र 1

स्पर्श रेखा य (X) अक्ष से थ (y) कोण बनाती हो, वा (Q) अत्यंत समीप पर दूसरा बिंदु हो जिससे ब बा=आच (PQ=ds) (किसी नियत बिंदु क (A) से ब (P) की चापीय दूरी च (s) होने पर), तो व (P) पर वक्रता

चित्र:Image002.gif

कही जाएगी। आथ (d y) को वक्रताकोण कहते हैं। यदि व (थ, र) {P (x, y)} पर वक्र की स्पर्श रेखा और अभिलंब य (X) अक्ष को स (T) और ग (G) पर काटे, तो ब स (PT) और ब ग (P G) क्रमश: इन दोनों की लंबाइयाँ कही जाती हैं। य (X) अक्ष पर ब स (P T) के प्रक्षेप स म (T M) को अध:- स्पर्शी (subtangent) और ब ग (P G) के प्रक्षेप मग (MG) को अधोलंब कहते हैं।

कार्तीय निर्देशांक दिए रहने पर इन चारों की लंबाईयाँ क्रमश:

चित्र:Image004.gif
चित्र:Image006.gif

है। यदि कोई स्पर्श रेखा वक्र की किसी शाखा को मूल से अनंत दूरी पर स्पर्श करती हो, तो उसे अनंतस्पर्शी (Asmyptote) कहते हैं। उदाहरण के लिए, फोलियम (folium), अनंतस्पर्शी (asmypote), य+र+क = 0 (x+y+a = 0) युक्त वक्र है (चित्र 2.)। यदि वक्र में कोई ऐसा बिंदु हो, जहाँ पर स्पर्श रेखा, निश्चित और अद्वितीय न हो, तो ऐसा, बिंदु विचित्र बिंदु

चित्र:Curve2.jpg
चित्र 2

(Singular point) कहलाता है। दूसरे शब्दों में ऐसे बिंदु के समीप कोई विचित्रता, या विशेषता अवश्य होती है। यदि बिंदु पर वक्र उत्तल से अवतल, या इसका उल्टा, हो रहा हो, अर्थात्‌ ऐसे बिंदु पर वक्र का कुछ भाग स्पर्श रेखा के एक ओर तथा कुछ भाग दूसरी ओर हो (चित्र 3.), तो बिंदु से वक्र की एक से अधिक शाखाएँ गुजरती हों, तो बिंदु को बहुल बिंदु (Multiple point) कहते हैं और यदि वक्र की दो शाखाएँ गुजरती हैं, तो इसे द्विक्‌ (double) बिंदु, तीन शाखा गुजरती हैं तो त्रिक्‌ (triple) बिंदु (चित्र 4.), इत्यादि कहा जाता है। यदि किसी ऐसे बिंदु पर स्पर्श रेखाएँ वास्तविक और अलग अलग हों, तो बिंदु को नोड (Node) कहते हैं (चित्र 5.) और यदि अलग अलग न हों, तो बिंदु कों कस्प (Cusp) कहते हैं|

चित्र:Curve3.jpg
चित्र 3
चित्र:Curve5 (2).jpg
चित्र 4

न (n) घात के किसी वक्र के द्विक्‌ बिंदुओं आदि की अधिकतम संख्या 1/2 (न-1) (न-2) चित्र:Curve7.gif हो सकती हैं। वक्र में किसी बिंदु से खींची जा सकनेवाली स्पर्श रेखाओं की

चित्र:Curve5 (1).jpg
चित्र 5
चित्र:Curve6.jpg
चित्र 6

संख्या न¢ = न (न-1), [n¢ = n (n-1)], नोडों की संख्या द (d), कस्पों की संख्या क (k), द्विक्‌ स्पर्श रेखाओं की संख्या द¢(d¢) और नतिपरिवर्तनों की संख्या क¢ (k¢) हो, तो समीकरणों के द्वारा इन छह राशियों में परस्पर संबंध स्थापित किए जा सकते हैं। इनमें से कोई भी तीन, शेष तीन के पदों में व्यक्त हो सकते हैं उदाहरणार्थ,

न¢ = न (न-1) -2द-3 क, [n¢ = n (n-1) - 2d-3k]

क¢ = 3न (न-2) - 6द-8क, [k¢ = 3n (n-2)-6d-8k]

क¢-क = [3 (न¢-न)], [ k¢-k = 3 (n¢-n]

2 (द¢-द) = (न¢-न) (न¢+न-9), [2 (d¢-d) = (n¢-n) (n¢+n-9] इत्यादि इत्यादि। इनको प्लकर (Plucker) समीकरण कहते हैं।

म (m) और न (n) घातों के दो वक्रों के उभयनिष्ठ बिंदुओं की संख्या मन (mn) होती है और प्रत्येक बिंदु दोनों वक्रों के समीकरणों को संतुष्ट करता है। वक्र का समीकरण दिए रहने पर वक्र का अनुरेखन संभव होता है। चरों के ऐसे संगत मान ज्ञात करके, जिसे समीकरण संतुष्ट हो जाए, उन अनेक बिंदुओं का पता लग सकता है जिनसे वक्र गुजरता है। इन बिंदुओं को जोड़ने पर वक्र की एक मोटी रूपरेखा का पता लग जाता है। फिर भी कुछ ऐसी बातें होती हैं जिनसे उसके आकार प्रकार, लक्षण, स्वरूप आदि जानने में आसानी हो जाती हैं, जैसे : (क) सममिति (Symmetry) - यदि वक्र के समीकरण में र (y) का कोई विषमघात नहीं है, तो वक्र य- अक्ष (X-axis) के प्रति सममित होगा।' यदि य (x) का कोई विषघात नहीं है, तो वक्र र-अक्ष (Y-axis) के प्रति सममित होगा, तथा य (x) और र (y) दोनों का कोई विषमघात नहीं है, तो वक्र दोनों अक्षों के प्रति सममित होगा। यदि य (x) और र (y) को क्रमश:-य (-x) और -र (-y) रखने से समीकरण में कोई अंतर नहीं पड़ता है, तो वक्र सम्मुख चतुर्थांशों में सममित होगा। य (x) और र (y) के विनिमय से समीकरण यदि अपरिवर्तित रहता है, तो वक्र र = य (y = x) रेखा के प्रति सममित होगा। ध्रुवी समीकरण में ठ (q) को -ठ (q) रखने से यदि कोई अंतर नहीं पड़ता है, तो वक्र आदि रेखा के प्रति सममित होगा। यदि र (r) का कोई विषमघात नहीं है, तो वक्र मूल के प्रति सममित होगा और ध्रुव एक केंद्र होगा।

(ख) अनंतस्पर्शी - इनकी संख्या और वक्र के सापेक्ष इनकी स्थिति।

(ग) वक्र के नतिपरिवर्तन बिंदु, बहुल बिंदु, कस्प, नोड आदि तथा इनकी संख्या और स्वरूप।

(घ) वक्र और अक्ष जहाँ कटते हैं, उन बिंदुओं पर वक्र की स्थिति और स्पर्श रेखाओं की दिशा आदि।

(च) मूल परस्पर्शी, वक्र के सापेक्ष उसकी स्थिति, विचित्रता आदि, यदि वक्र मूल से गुजरता हो।

(छ) वक्र की सीमाएँ।

टीका टिप्पणी और संदर्भ